Answer:
b. end on the n = 2 shell.
Explanation:
When hydrogen atoms move from higher energy level to lower energy level then it shows spectral lines and these lines are known as Balmer series. The only four lines are visible and other liens are not in the visible range.
The Balmer series formed by hydrogen electron and it ends when n = 2.
Therefore the answer is b.
b. end on the n = 2 shell.
Answer:
The distance traveled by the balloon is 10.77 m
Explanation:
velocity of the ball,
= 2 m/s south
velocity of the air,
= 5 m/s west
To determine the distance the balloon will travel after 2 seconds, first determine the resultant velocity of the balloon.
| 2m/s
|
|
↓
5m/s ←------------------
the two velocities forms a right angled triangle and the resultant will be the hypotenuses side of the triangle.
R² = 5² + 2²
R² = 29
R = √29
R = 5.385 m/s
The distance traveled by the balloon is calculated as;
d = R x t
where;
t is time of the motion = 2 seconds
d = 5.385 x 2
d = 10.77 m
Therefore, the distance traveled by the balloon is 10.77 m.
There are at least two forces on it, and there could be more.
Vertical forces:
-- gravity, directed downward
-- buoyant force, directed upward
These two forces must be exactly equal, so that the net
vertical force on the raft is zero. Otherwise, it would be
accelerating either up or down.
Horizontal forces:
We know that the net horizontal force on the raft is zero.
Otherwise, it would be accelerating horizontally.
But we don't know if there are actually no horizontal forces
at all, or a balanced group of horizontal forces, that add up
to a net force of zero.
Answer:
Hz
Explanation:
We know that
1 cm = 0.01 m
= Length of the human ear canal = 2.5 cm = 0.025 m
= Speed of sound = 340 ms⁻¹
= First resonant frequency
The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

for first resonant frequency, we have n = 1
Inserting the values


Hz
If there's any point in a circuit where the current has a choice
of which branch to take, then you have a <em>parallel circuit</em>.