If you press on your arm force is applied work done is if it moves.
One answer could be if I was to press my hand on a table.
Have a great day!
Answer:
Llegara a su destino a la 1:00 pm
Explanation:
Si el coche va a 90 km/h buscamos un numero q al multiplicarlo por 90 nos de 450. Entonces 90×5 = 450, si hacemos la cuenta desde las ocho de la mañana mas las 5 horas del viaje terminaria llegando a su destino a la 1:00 pm.
The lowest energy of electron in an infinite well is 1.2*10^-33J.
To find the answer, we have to know more about the infinite well.
<h3>What is the lowest energy of electron in an infinite well?</h3>
- It is given that, the infinite well having a width of 0.050 mm.
- We have the expression for energy of electron in an infinite well as,


- Thus, the lowest energy of electron in an infinite well is,

Thus, we can conclude that, the lowest energy of electron in an infinite well is 1.2*10^-33J.
Learn more about the infinite well here:
brainly.com/question/20317353
#SPJ4
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:
