56x56=3136 you would divide that by 500 and get 6.272
Answer:
(identity has been verified)
Step-by-step explanation:
Verify the following identity:
sin(x)^4 - sin(x)^2 = cos(x)^4 - cos(x)^2
sin(x)^2 = 1 - cos(x)^2:
sin(x)^4 - 1 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
-(1 - cos(x)^2) = cos(x)^2 - 1:
cos(x)^2 - 1 + sin(x)^4 = ^?cos(x)^4 - cos(x)^2
sin(x)^4 = (sin(x)^2)^2 = (1 - cos(x)^2)^2:
-1 + cos(x)^2 + (1 - cos(x)^2)^2 = ^?cos(x)^4 - cos(x)^2
(1 - cos(x)^2)^2 = 1 - 2 cos(x)^2 + cos(x)^4:
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = ^?cos(x)^4 - cos(x)^2
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = cos(x)^4 - cos(x)^2:
cos(x)^4 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
The left hand side and right hand side are identical:
Answer: (identity has been verified)
2+4a=-10
First, subtract 2 from both sides.
4a=-12
Then divide 4 from both sides.
a=-3
hope it helps!
Step-by-step explanation:
The equation of line A:
y-1=0, 5x-3
y=0, 5x-2. Hence its gradient is 0,5
For line B, its you intercept is -8, so y=mx-8.
When x = -4, y=-4m -8 =0 as shown in the graph. This means that m = -2.
Since |-2| > |0, 5|, line B is steeper than line A.
st + 3t = 6 for s
Subtract 3t to both sides
st + 3t - 3t = 6 - 3t
Simplify
st = 6 - 3t
Divide both sides by t
st/t = (6-3t)/3
simplify
s = 6/3 - 3t/3
s = 2 - t