Answer:
the linear speed of the car is 28.83 m/s
Explanation:
Given;
radius of the car, r = 0.33 m
angular speed of each tire, ω = 13.9 rev/s = 13.9 x 2π = 87.35 rad/s
The linear speed of the car is calculated as;
V = ωr
V = 87.35 rad/s x 0.33 m
V = 28.83 m/s
Therefore, the linear speed of the car is 28.83 m/s
Answer:
Explanation:
Given
speed of ball 
launch angle 
Range of a Projectile 
Range will be common for two angles i.e. ![\theta [tex] and [tex]90-\theta](https://tex.z-dn.net/?f=%5Ctheta%20%5Btex%5D%20and%20%5Btex%5D90-%5Ctheta%20)
for 

For 



The cart comes to rest from 1.3 m/s in a matter of 0.30 s, so it undergoes an acceleration <em>a</em> of
<em>a</em> = (0 - 1.3 m/s) / (0.30 s)
<em>a</em> ≈ -4.33 m/s²
This acceleration is applied by a force of -65 N, i.e. a force of 65 N that opposes the cart's motion downhill. So the cart has a mass <em>m</em> such that
-65 N = <em>m</em> (-4.33 m/s²)
<em>m</em> = 15 kg
Ion
<u>Explanation:</u>
At the synaptic terminal, voltage-gated ion channels open, thereby stimulating the synaptic vesicles to release the neurotransmitters by exocytosis.
These ion channels are the signaling molecules in neurons. They are the transmembrane proteins that form ion channels. The membrane potential changes the conformation of the channel proteins that regulates their opening and closing. These channels play an important role in neurotransmitter release in presynaptic nerve endings.
For example - Ca²⁺ gated ion channel.