Hello!
Use <u>ohm law:</u>
I = V / R
Replacing:
I = 100 V / 20 O
I = 5 A
The current is <u>5 amperes.</u>
Answer:
(a) Jx = -1.14Ns, Jy = 110×3×10-³ = 0.330Ns (b) V = (0m/s)ı^−(1.79m/s)ȷ^
Explanation:
Given
W = 0.56N = mg
m = 0.56/g = 0.56/9.8 = 0.057kg
t = 3.00ms = 3.00×10-³s
Impulse is a vector quantity so we would treat it as such
We have been given the force and velocity in their component forms so to get the impulse from these quantities, we pick the respective component for the quantity we want to calculate and do the necessary calculation. The masses are scalar quantities and so do not affect the signs used in the calculations whether positive or negative. So we have that
u = (20.0m/s)ı^−(4.0m/s)ȷ^
ux = 20m/s
uy = – 4.0m/s
F = – (380N)ı^+(110N)ȷ^
Fx = –380N
Fy = 110N
J = impulse = force × time = F×t
So Jx = Fx ×t
Jy = Fy×t
Jx = –380×3×10-³ = -1.14Ns
Jy = 110×3×10-³ = 0.330Ns
Impulse also equals the change in momentum of the body. So
J = m(v–u)
J/m = v – u
V= J/m + u
Vx = Jx/m + ux
Vx = –1.14/0.057 + 20
Vx = -20 + 20 = 0m/s
Vx = 0m/s
Vy= Jy/m + uy
Vy= 0.33/0.057 + (-4.0)
Vy= 5.79 + (-4.0) = 1.79m/s
V = (0m/s)ı^−(1.79m/s)ȷ^
Lucite has a refractive index of n=1.50. This means that the speed of the light in lucite is decreased according to:

where

is the speed of light in air. Putting the number in the formula, we find that the speed of light in lucite is

The frequency of the light is

, so now we can calculate the wavelength in lucite by using the formula:

<span>Therefore, the correct answer is (2) 393 nm.</span>
The answer is....
214.28
which would be 214.3 or 214
Answer:
14.5 hours
Explanation:
The relationship between speed, time and distance for a uniform motion is

where
v is the speed
d is the distance
t is the time taken
Here we know:
v = 24.0 m/s is the average speed
is the distance
Solving the equation, we find the time taken:

And since
1 hour = 3600 s
The time in hours is
