Area near a sea having flat land and low relief
First, we will get the resultant force:
The direction of the force due to the person's weight is vertically down.
weight of person = 700 newton
Assume that the force exerted by the arms has a vertically upwards direction.
Force exerted by arms = 2*355 = 710 newtons
Therefore, the resultant force = 710 - 700 = 10 newtons (in the vertically upwards direction)
Now, we will get the mass of the person.
weight = 700 newtons
weight = mass * acceleration due to gravity
700 = 9.8*mass
mass = 71.428 kg
Then we will calculate the acceleration of the resultant force:
Force = mass*acceleration
10 = 71.428*acceleration
acceleration = 0.14 m/sec^2
Finally, we will use the equation of motion to get the final speed of the person.
V^2 = U^2 + 2aS where:
V is the final velocity that we need to calculate
U is the initial velocity = 0 m/sec (person starts at rest)
a is the person's acceleration = 0.14 m/sec^2
S is the distance covered = 25 cm = 0.25 meters
Substitute with the givens in the above equation to get the final speed as follows:
V^2 = U^2 + 2aS
V^2 = (0)^2 + 2(0.14)(0.25)
V^2 = 0.07
V = 0.2645 m/sec
Based on the above calculations:
The person's speed at the given point is 0.2645 m/sec
Because many fuels are fossil fuels they take millions of years to form and the known reserves are being used much faster than the new ones being made
Explanation:
it can be used to show how the parts of the cycle relate to one another
Answer:
The <em><u>n = 2 → n = 3</u></em> transition results in the absorption of the highest-energy photon.
Explanation:

Formula used for the radius of the
orbit will be,
where,
= energy of
orbit
n = number of orbit
Z = atomic number
Here: Z = 1 (hydrogen atom)
Energy of the first orbit in H atom .

Energy of the second orbit in H atom .

Energy of the third orbit in H atom .

Energy of the fifth orbit in H atom .

Energy of the sixth orbit in H atom .

Energy of the seventh orbit in H atom .

During an absorption of energy electron jumps from lower state to higher state.So, absorption will take place in :
1) n = 2 → n = 3
2) n= 5 → n = 6
Energy absorbed when: n = 2 → n = 3


Energy absorbed when: n = 5 → n = 6


1.89 eV > 0.166 eV
E> E'
So,the n = 2 → n = 3 transition results in the absorption of the highest-energy photon.