The answer to that would be B. This is because carrying capacity is the amount of something that can be handled.
Answer:
In some ways, monotremes are very primitive for mammals because, like reptiles and birds, they lay eggs rather than having live birth. In a number of other respects, monotremes are rather derived, having highly modified snouts or beaks, and modern adult monotremes have no teeth.
Fish will eat tadpoles if they can get to them. The only way to stop them would be to give the tadpoles a space that the fish can't get to, like a shallow area with a barrier (plastic mesh would work but make sure the fish can't get caught in it) or lots of plants, or make a separate wildlife pond.
So we know that to transport materials in or out of the cell, we need to have access to both the inside and outside of the cell. This would require that the protein be a transmembrane protein that reaches both the inside and the outside of the cell.
So in this case, let's look at pore proteins. These are proteins that cross a membrane and act as a pore for the materials that need to cross the membrane.
One example of a pore protein is an aquaporin. These proteins aid in the transport of water into or out of a cell.
Therefore, the answer to your question is: A) Pore proteins.
Answer:
Explanation:
Normally, under anaerobic condition in yeast, pyruvate produced from glycolysis leads to the production of ethanol as shown below.
pyruvate ⇒ acetaldehyde + NADH ⇒ ethanol + NAD
The pyruvate is converted to acetaldehyde by the enzyme, pyruvate decarboxylase. It should be NOTED that carbon dioxide is released in this step. The acetaldehyde produced in the "first step" is then converted to ethanol by the enzyme alcohol dehydrogenase. It must be noted from the above that the steps are irreversible.
If a mutated strain of yeast is unique because it does not produce alcohol and lactic acid (which is referred to as toxic acid in the question); thus having a high level of pyruvate because of the presence of a novel enzyme. <u>The function of this novel enzyme will most likely be the conversion of acetaldehyde in the presence of carbondioxide back to pyruvate; thus making that step reversible</u>. This could be a possible explanation for the high level of pyruvate present in the yeast.