The electron configuration of V³⁺ is [Ar]
. The ion is paramagnetic because it has two unpaired electrons
<h3>
What is paramagnetic?</h3>
- A weak magnetic field supplied externally can weakly attract some materials, which then create internal magnetic fields that are directed in the same direction as the applied magnetic field. This phenomenon is known as paramagnetic.
- Diamagnetic materials, in contrast, are attracted to magnetic fields and produce induced magnetic fields that are directed in the opposite direction from the applied magnetic field.
- The majority of chemical elements and some compounds are considered to be paramagnetic materials.
- Paramagnetic materials have a relative magnetic permeability that is somewhat more than 1, which makes them attracted to magnetic fields.
- The applied field induces a linearly decreasing magnetic moment that is relatively weak.
- Modern experiments on paramagnetic materials are frequently done with a sensitive analytical balance since it typically requires a sensitive analytical balance to identify the effect.
To learn more about paramagnetic with the given link
brainly.com/question/18865305
#SPJ4
Sulfur and chlorine. Explanation: A covalent bond is formed by two non-metals with similar electronegativities. As a consequence, they share one or more pairs of electrons between their nuclei
Answer:
Renewable energy
Explanation:
on the other hand, typically emits less CO2 than fossil fuels. In fact, renewables like solar and wind power—apart from construction and maintenance—don't emit any CO2 at all. With renewable energy, you can breathe easier, stay cooler, and create a more comfortable world for generations to come.
Answer:
0.683 moles of the gas are required
Explanation:
Avogadro's law relates the moles of a gas with its volume. The volume of a gas is directely proportional to its moles when temperature and pressure of the gas remains constant. The law is:
V₁n₂ = V₂n₁
<em>Where V is volume and n are moles of 1, initial state and 2, final state of the gas.</em>
<em />
Computing the values of the problem:
1.50Ln₂ = 5L*0.205mol
n₂ = 0.683 moles of the gas are required
<em />