As one moves across a period, from left to right, both the number of protons and electrons of a neutral atom increase. The enhancing number of electrons and protons results in a greater attraction between the electrons and the nucleus. This uplifted attraction pulls the electrons nearer to the nucleus, therefore, reducing the size of the atom.
On the other hand, while moving down a group, there is an increase in the number of energy levels. The enhanced number of energy levels increases the size of the atom in spite of the elevation in the number of protons. In the outermost energy levels, the protons get attracted towards the nucleus, however, the attraction is less due to an increase in the distance from the nucleus.
According to Raoult's low:
We will use this formula: Vp(Solution) = mole fraction of solvent * Vp(solvent)
∴ mole fraction of solvent = Vp(Solu) / Vp (Solv)
when we have Vp(solu) = 25.7 torr & Vp(solv) = 31.8 torr
So by substitution:
∴ mole fraction of solvent = 25.7 / 31.8 =0.808
when we assume the moles of solute NaCl = X
and according to the mole fraction of solvent formula:
mole fraction of solvent = moles of solvent / (moles of solvent + moles of solute)
by substitute:
∴ 0.808 = 0.115 / (0.115 + X)
So X (the no.of moles of NaCl) = 0.027 m
<span>(15.0 g) / (150.0 g) x (100 g) = 10.0 g/100 g H2O </span>
Answer:
Kinetic energy increases.
Explanation:
In a solid, molecules do not have much room to move. They are very slow moving, which means that kinetic energy is low. In a liquid, molecules have more room to move. They are able to move faster than a solid, which means that kinetic energy is low.
From greatest to lowest kinetic energy:
gas, liquid, solid