Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa
To solve this problem we will apply the concepts related to the balance of Forces, the centripetal Force and Newton's second law.
I will also attach a free body diagram that allows a better understanding of the problem.
For there to be a balance between weight and normal strength, these two must be equivalent to the centripetal Force, therefore


Here,
m = Net mass
= Angular velocity
r = Radius
W = Weight
N = Normal Force

The net mass is equivalent to

Then,

Replacing we have then,

Solving to find the angular velocity we have,

Therefore the angular velocity is 0.309rad/s
Answer:

Explanation:
Potential energy is minus the integral of Fdx. Doing the integration yields:



so


Now for x=3.0m


Answer:
gravity
Explanation:
the Forest of gravity causes objects to fall toward the center of the Earth.
In order for the object to move upward, it needs an upward force
that's at least equal to its own weight.
Weight = (mass) x (gravity) = (35 kg) x (9.8 m/s²) = 343 N.
The engine thrust has to be more than 343 N.