g (12 points) The time between incoming phone calls at a call center is a random variable with exponential density p(x) = 1 r e
−x/r on [0, [infinity]), where r = 20 ln(2). a. Verify that the function p(x) is a Probability Density Function.
1 answer:
Answer:

Explanation:
A function f(x) is a Probability Density Function if it satisfies the following conditions:

Given the function:

(1)p(x) is greater than zero since the range of exponents of the Euler's number will lie in 
(2)
![\int_{0}^{\infty} p(x)=\int_{0}^{\infty} \dfrac{1}{r}e^{-x/r}\\=\dfrac{1}{r} \int_{0}^{\infty} e^{-x/r}\\=-\dfrac{r}{r}\left[e^{-x/r}\right]_{0}^{\infty}\\=-\left[e^{-\infty/r}-e^{-0/r}\right]\\=-e^{-\infty}+e^{-0}\\SInce \: e^{-\infty} \rightarrow 0\\e^{-0}=1\\\int_{0}^{\infty} p(x)=1](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20p%28x%29%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20%5Cdfrac%7B1%7D%7Br%7De%5E%7B-x%2Fr%7D%5C%5C%3D%5Cdfrac%7B1%7D%7Br%7D%20%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20e%5E%7B-x%2Fr%7D%5C%5C%3D-%5Cdfrac%7Br%7D%7Br%7D%5Cleft%5Be%5E%7B-x%2Fr%7D%5Cright%5D_%7B0%7D%5E%7B%5Cinfty%7D%5C%5C%3D-%5Cleft%5Be%5E%7B-%5Cinfty%2Fr%7D-e%5E%7B-0%2Fr%7D%5Cright%5D%5C%5C%3D-e%5E%7B-%5Cinfty%7D%2Be%5E%7B-0%7D%5C%5CSInce%20%5C%3A%20e%5E%7B-%5Cinfty%7D%20%5Crightarrow%200%5C%5Ce%5E%7B-0%7D%3D1%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20p%28x%29%3D1)
The function p(x) satisfies the conditions for a probability density function.
You might be interested in
Its b.functional paragraph because writers use this for interest presents and special effects
Your answer is 20
just take 1,200 divided by 60 [second] :)
Most likely it would be C not completely sure
5
Explanation:
hbmhbhjvjhvkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
The answer you are looking for is B, hope this helps.