Answer:
The inverse of the function is
.
The domain of the inverse function is ![D:(-\infty,0],\{x|x\in \mathbb{R}\}](https://tex.z-dn.net/?f=D%3A%28-%5Cinfty%2C0%5D%2C%5C%7Bx%7Cx%5Cin%20%5Cmathbb%7BR%7D%5C%7D)
Step-by-step explanation:
Given : Function
where, ![x\geq 3](https://tex.z-dn.net/?f=x%5Cgeq%203)
To find : What is the inverse of the function? What is the domain of the inverse?
Solution :
Function ![y=9-x^2](https://tex.z-dn.net/?f=y%3D9-x%5E2)
To find the inverse we interchange the value of x and y,
![x=9-y^2](https://tex.z-dn.net/?f=x%3D9-y%5E2)
Now, we get the value of y
![y^2=9-x](https://tex.z-dn.net/?f=y%5E2%3D9-x)
![y=\pm\sqrt{9-x}](https://tex.z-dn.net/?f=y%3D%5Cpm%5Csqrt%7B9-x%7D)
As
so x>0
![y=\sqrt{9-x}](https://tex.z-dn.net/?f=y%3D%5Csqrt%7B9-x%7D)
The inverse of the function is
.
The domain of the inverse is the range of the original function.
The range is defined as the set of all possible value of y.
As ![x\geq 3](https://tex.z-dn.net/?f=x%5Cgeq%203)
Squaring both side,
![x^2\geq 9](https://tex.z-dn.net/?f=x%5E2%5Cgeq%209)
Subtract
both side,
![9-x^2\leq 0](https://tex.z-dn.net/?f=9-x%5E2%5Cleq%200)
![y\leq 0](https://tex.z-dn.net/?f=y%5Cleq%200)
The range of the function is ![R:(-\infty,0],\{y|y\in \mathbb{R}\}](https://tex.z-dn.net/?f=R%3A%28-%5Cinfty%2C0%5D%2C%5C%7By%7Cy%5Cin%20%5Cmathbb%7BR%7D%5C%7D)
The domain of the inverse function is ![D:(-\infty,0],\{x|x\in \mathbb{R}\}](https://tex.z-dn.net/?f=D%3A%28-%5Cinfty%2C0%5D%2C%5C%7Bx%7Cx%5Cin%20%5Cmathbb%7BR%7D%5C%7D)