Answer:
10.6 grams is approximately 0.10 moles. So you would need about 0.10 moles of sulfuric acid. That converts to about 9.80 grams.
Explanation:
hi girl i also wrote this in my test today so maube i hope it is correct.
mark me as brainliest if it helped you
Answer:
I am sure that the C one is correct
Answer:
11.39
Explanation:
Given that:


Given that:
Mass = 1.805 g
Molar mass = 82.0343 g/mol
The formula for the calculation of moles is shown below:

Thus,


Given Volume = 55 mL = 0.055 L ( 1 mL = 0.001 L)


Concentration = 0.4 M
Consider the ICE take for the dissociation of the base as:
B + H₂O ⇄ BH⁺ + OH⁻
At t=0 0.4 - -
At t =equilibrium (0.4-x) x x
The expression for dissociation constant is:
![K_{b}=\frac {\left [ BH^{+} \right ]\left [ {OH}^- \right ]}{[B]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20BH%5E%7B%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20%7BOH%7D%5E-%20%5Cright%20%5D%7D%7B%5BB%5D%7D)

x is very small, so (0.4 - x) ≅ 0.4
Solving for x, we get:
x = 2.4606×10⁻³ M
pOH = -log[OH⁻] = -log(2.4606×10⁻³) = 2.61
<u>pH = 14 - pOH = 14 - 2.61 = 11.39</u>
Answer:
At equilibrium, the concentration of
is going to be 0.30M
Explanation:
We first need the reaction.
With the information given we can assume that is:
+
⇄ 2
If there is placed 0.600 moles of NO in a 1.0-L vessel, we have a initial concentration of 0.60 M NO; and no
nor
present. Immediately,
and
are going to be produced until equilibrium is reached.
By the ICE (initial, change, equilibrium) analysis:
I: [
]=0 ; [
]= 0 ; [
]=0.60M
C: [
]=+x ; [
]= +x ; [
]=-2x
E: [
]=0+x ; [
]= 0+x ; [
]=0.60-2x
Now we can use the constant information:
![K_{c}=\frac{[products]^{stoichiometric coefficient} }{[reactants]^{stoichiometric coefficient} }](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5Bproducts%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D%7B%5Breactants%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D)
= 
= 
= 




At equilibrium, the concentration of
is going to be 0.30M