Answer:
We could get the time taken by the ball to return back to earth, using the formula:
s = u t + ½ a t², where
s = displacement of the body moving with initial velocity u, acceleration 'a' in time t.
In the present case s=0 (as the ball returns back to starting time)
u= 30 m/s; a = -10 m/s² ( negative sign as a is in opposite direction to u); t=?
0 = 30 t - ½ ×10 ×t²; ==> 5 t = 30, t= 6 second.
So ball will return back after 6 second after being thrown up.
Explanation:
I looked it up
Hope this helps
Answer:
The use of renewable sources of energy help to solve the problem of energy crisis is discussed below in details.
Explanation:
Environmental and economic advantages of adopting renewable energy incorporate: Creating energy that originates no greenhouse gas discharges from fossil fuels and decreases some kinds of air pollution. Increasing energy stocks and decreasing dependency on shipped fuels.
Here are 5 actionable suggestions you can follow to make a decent utilization of renewable energy on your bases:
- Embrace Solar-Powered Technologies.
- Crowdfund Clean Energy Projects.
- Establish the Society of Concerned Scientists.
Answer:
the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°
Explanation:
Given the data in the question and as illustrated in the diagram below.
speed of the ship v = 0.90c
base of the ladder from the wall x₀ = 3.0 m
top of the later above the floor y = 4.0 m
we determine angle θ.
from the diagram,
tanθ = y/x₀
tanθ = y / x₀√( 1 - v²/c² )
we substitute
tanθ = 4.0 / 3.0√( 1 - ((0.9c)²/c²) )
tanθ = 4.0 / 3.0√( 1 - ((0.9²)c²/c²) )
tanθ = 4.0 / 3.0√( 1 - (0.9²) )
tanθ = 4.0 / 3.0√( 1 - 0.81 )
tanθ = 4.0 / 3.0√0.19
tanθ = 4.0 / 1.30766968
tanθ = 3.058876
θ = tan⁻¹( 3.058876 )
θ = 71.8965 ≈ 71.9°
Therefore, the angle the ladder makes with the floor as seen by an observer on Earth is 71.9°
Hi there,
Unlike velocity,speed is scalar,which means it is described by MAGNITUDE only.
Answer:
The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 -.65 gauss).
Explanation:
<em>To measure the Earth's magnetism in any place, we must measure the direction and intensity of the field. The Earth's magnetic field is described by seven parameters. These are declination (D), inclination (I), horizontal intensity (H), the north (X), and east (Y) components of the horizontal intensity, vertical intensity (Z), and total intensity (F). The parameters describing the direction of the magnetic field are declination (D) and inclination (I). D and I are measured in units of degrees, positive east for D and positive down for me. The intensity of the total field (F) is described by the horizontal component (H), vertical component (Z), and the north (X) and east (Y) components of the horizontal intensity. These components may be measured in units of gauss but are generally reported in nanoTesla (1nT * 100,000 = 1 gauss). </em><em>The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 - .65 gauss). </em><em>Magnetic declination is the angle between magnetic north and true north. D is considered positive when the angle measured is east of true north and negative when west. The magnetic inclination is the angle between the horizontal plane and the total field vector, measured positive into Earth. In older literature, the term “magnetic elements” is often referred to as D, I, and H.</em>