The density of the block is 1.25 cm³
The correct answer to the question is Option B. 1.25 cm³
To solve this question, we'll begin by calculating the volume of the block. This can be obtained as follow:
Length = 7 cm
Height = 4 cm
Width = 3 cm
<h3>Volume =? </h3>
Volume = Length × Width × Height
Volume = 7 × 3 × 4
<h3>Volume = 84 cm³</h3>
Thus, the volume of the block is 84 cm³
Finally, we shall determine the density of the block. This can be obtained as follow:
Density is defined as mass per unit volume i.e

Mass of block = 105 g
Volume of block = 84 cm³
<h3>Density of block =? </h3>

<h3>Density of block = 1.25 cm³</h3>
Therefore, the density of the block is 1.25 cm³.
Hence, Option B. 1.25 cm³ gives the correct answer to the question.
Learn more: brainly.com/question/2040396?referrer=searchResults
Answer:
891 excess electrons must be present on each sphere
Explanation:
One Charge = q1 = q
Force = F = 4.57*10^-21 N
Other charge = q2 =q
Distance = r = 20 cm = 0.2 m
permittivity of free space = eo =8.854×10−12 C^2/ (N.m^2)
Using Coulomb's law,
F=[1/4pieo]q1q2/r^2
F = [1/4pieo]q^2 / r^2
q^2 =F [4pieo]r^2
q = r*sq rt F[4pieo]
q=0.2* sq rt[ 4.57 x 10^-21]*[4*3.1416*8.854*10^-12]
q = 1.42614*10^ -16 C
number of electrons = n = q/e=1.42614*10^ -16 /1.6*10^-19
n =891
891 excess electrons must be present on each sphere
Answer:
is there suppose to be a pic?
Explanation:
Answer:
C) T
Explanation:
= Mass attached to an ideal spring
= Amplitude of the motion
= Time period of oscillation
= Spring constant of the spring
= Amplitude of the motion
Time period of oscillation of the mass attached to the spring is given as

So we see that the time period does not depend on the amplitude. hence the period of oscillation remains the same.