Hello there!
Essentially, a control variable is what is kept the same throughout the experiment, and it is not of primary concern in the experimental outcome. Any change in a control variable in an experiment would invalidate the correlation of dependent variables (DV) to the independent variable (IV), thus skewing the results.
Because,
In left image pin is not touch to the wire.
In right image pin is touch to the wire.
Hope it helps you.....
Plz...Plz...Plz...Plz…Plz…
Mark be Brainliest.....
Please.....
And..
Please thanks me.....
Plz.....Plz.....
The spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Explanation:
When a spring is stretched or compressed its length changes by an amount x from its equilibrium length then the restoring force is exerted.
spring constant is k = 1.00 * 10^3 N/m
mass is x = 20.0 cm
According to Hooke's law, To find restoring force,
F = - kx
= - 1.00 *10 ^3 * 20.0
F = 20000 N/m
Thus, the spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Answer:
Part of the question is missing but here is the equation for the function;
Consider the equation v = (1/3)zxt2. The dimensions of the variables v, x, and t are [L/T], [L], and [T] respectively.
Answer = The dimension for z = 1/T3 i.e 1/ T - raised to power 3
Explanation:
What is applied is the principle of dimensional homogenuity
From the equation V = (1/3)zxt2.
- V has a dimension of [L/T]
- t has a dimension of [T]
- from the equation, make z the subject of the relation
- z = v/xt2 where 1/3 is treated as a constant
- Substituting into the equation for z
- z = L/T / L x T2
- the dimension for z = 1/T3 i.e 1/ T - raised to power 3
Because thats the motor working hard to process food