Answer:
c. As we gain mass, the force of gravity on us increases
Because the elevator moves at a constant speed, it's in equilibrium and the net force acting on it is zero. Then the tension in the cable exactly equals the magnitude of the elevator's weight, which is
(3000 kg) (9.80 m/s²) = 29,400 N
Answer:
<h2>42.67N</h2>
Explanation:
Step one:
<u>Given </u>
mass m= 0.32kg
intital velocity, u= 14m/s
final velocity v= 22m/s
time= 0.06s
Step two:
<u>Required</u>
Force F
the expression for the force is
F=mΔv/t
F=0.32*(22-14)/0.06
F=(0.32*8)/0.06
F=2.56/0.06
F=42.67N
The average force exerted on the bat 42.67N
Answer:



Explanation:
Given
at 
Point: 
,
-- Missing Information
Required
Determine the parametric equations

Differentiate with respect to t

Let t = 1 (i.e
)





To solve for x, y and z, we make use of:

This implies that:

So, we have:


By comparison:

Divide by i

Divide by j


Divide by k

Hence, the parametric equations are:


