Weight = (mass) x (gravity)
70 N = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²) , and you have
mass = 70 N / 9.8 m/s² = 7.14 kg.
___________________________
Mass on the moon:
Mass doesn't change. It's a number that belongs to the bowling ball,
no matter where the ball goes. If the mass of the bowling ball is 7.14 kg
anywhere, then it's 7.14 kg everywhere ... on Earth, on the moon, on Mars, rolling around in the trunk of my car, or floating in intergalactic space.
However, WEIGHT depends on the gravity wherever the ball happens to be
at the moment.
The acceleration of gravity on the moon is 1.622 m/s².
So the WEIGHT of the ball on the moon is
(7.14 kg) x (1.622 m/s²) = 11.58 Newtons
That's only about 16% of its weight on Earth.
Classify is not a step in the inquiry process
Tornadoes are known for their force and strength. When it tornadoe touches ground, it rips up everything in its path, and can rarely suck up people. Some are very short, and others are very, very long.
Reflection- looking at yourself in a mirror and seeing the moon in the sky
Refraction- putting on your glasses in order to see more clearly and the pencil looks like it’s bent when you stick one end of it in water.