Answer:
The expresion for the flux through the disk is:
Ф = E·πR^2·cos(Θ).
Explanation:
Let's sat the electric field has direction e and the normal to the disk has direction n (bold means vector quantities). So we have:
E=E·e (where E is the magnitud of the electric flied)
A=A·n
The flux for an uniform electric field and a flat surface is:
Ф=E×A
⇒ Ф = E·A·e×n = E·A·cos(angle(e,n)) = E·A·cos(Θ)
Since in this case the area is for a disk of radius R, 
So, Ф = E·πR^2·cos(Θ)
Answer:
The final velocity of the wooden block is equal to 
Explanation:
Given that mass of bullet =
Mass of wood = 
Initial velocity of bullet = 
Final velocity of bullet = 
Initial velocity of wood = o
Final velocity of wood = ![v_{w]](https://tex.z-dn.net/?f=v_%7Bw%5D)
Here momentum is conserved so initial momentum = final momentum
.
Upon substituting these values in above equation , we get
.
Newton’s Second Law concerns the generation of force based on an object’s mass and acceleration, as described by the equation F=ma.
Hope this helps!
Answer:
Final Velocity = 4.9 m/s
Explanation:
We are given;. Initial velocity; u = 2 m/s
Constant Acceleration; a = 0.1 m/s²
Distance; s = 100 m
To find the final velocity(v), we will use one of Newton's equations of motion;
v² = u² + 2as
Plugging in the relevant values to give;
v² = 2² + 2(0.1 × 100)
v² = 4 + 20
v² = 24
v = √24
v = 4.9 m/s
Answer:
The angular speed is 
Explanation:
From the question we are told that
The time taken is 
The number of somersaults is n = 1.5
The total angular displacement during the somersault is mathematically represented as

substituting values


The angular speed is mathematically represented as

substituting values

