<span>The particles through which compressional waves travel move in the same direction as the wave. This may be observed by fixing one end of a large spring and then compressing and extending the other end. The wave travels from one end to the other and the spring's parts move in the same direction.</span>
Answer:
the train is moving at the speed of v = 1.79 m/s
Explanation:
given,
rain drop is falling vertically down with the speed of = 3.84 m/s
angle of the rain drop = 25°
tan θ =
tan 25° =
v =3.84 × tan 25°
v = 1.79 m/s
hence, the train is moving at the speed of v = 1.79 m/s
Let
be the average acceleration over the first 2.46 seconds, and
the average acceleration over the next 6.79 seconds.
At the start, the car has velocity 30.0 m/s, and at the end of the total 9.25 second interval it has velocity 15.2 m/s. Let
be the velocity of the car after the first 2.46 seconds.
By definition of average acceleration, we have


and we're also told that

(or possibly the other way around; I'll consider that case later). We can solve for
in the ratio equation and substitute it into the first average acceleration equation, and in turn we end up with an equation independent of the accelerations:


Now we can solve for
. We find that

In the case that the ratio of accelerations is actually

we would instead have

in which case we would get a velocity of

Force is directly proportional to rate of change of velocity so it increasing, velocity (motion of the object) will also increase.
Hope this helps!