The original functions are: f(n) = 500 and g(n) = [9/10]^(n-1)
A geometric sequence combining them is: An = f(n)*g(n) = 500*[9/10]^(n-1):
Some terms are:
A1= 500
A2 = 500*[9/10]
A3 = 500*[9/10]^2
A4 = 500*[9/10]^3
....
A11 = 500*[9/10]^10 ≈ 174.339
Answer: the third option, An = 500[9/10]^(n-1); A11 = 174.339
The function is
f(x) = (1/3)x² + 10x + 8
Write the function in standard form for a parabola.
f(x) = (1/3)[x² + 30x] + 8
= (1/3)[ (x+15)²- 225] + 8
= (1/3)(x+15)² -75 + 8
f(x) = (1/3)(x+15)² - 67
This is a parabola with vertex at (-15, -67).
The axis of symmetry is x = -15
The curve opens upward because the coefficient of x² is positive.
As x -> - ∞, f -> +∞.
As x -> +∞, f -> +∞
The domain is all real values of x (see the graph below).
Answer: The domain is (-∞, ∞)
Hello!
I just completed this test and if I'm correct in assuming that this is the same problem I did, then your answer would be 18 cm.
Hope this helps! :)