Here is the complete question.
Glycerol (C3H8O3), also called glycerine, is widely used in the food and pharmaceutical industries. Glycerol is polar and dissolves readily in water and polar organic solvents like ethanol. Calculate the mole fraction of the solvent in a solution that contains 1.61 g glycerol dissolved in 22.60 mL ethanol (CH3CH2OH; density = 0.7893 g/mol). Round to four significant digits
Answer:
0.9567 mol
Explanation:
Given that:
mass of glycerol = 1.61 g
molar mass of glycerol = 92.1 g/mol
no of mole = 
∴ number of moles of glycerol (
) = 
= 0.0175 mol
Volume of ethanol = 22.60 mL
Density of ethanol = 0.7893 g/mL
Since Density = 
∴ mass of ethanol = density of ethanol × volume of ethanol
mass of ethanol = 0.7893 g/mL × 22.60 mL
mass of ethanol = 17.838 g
Number of moles of ethanol
= 
= 0.387 mole
∴ the mole fraction of the solvent can be determined as:



= 0.95673671199
≅ 0.9567 mol
∴ The mole fraction of the solvent in a solution that contains 1.61 g glycerol dissolved in 22.60 mL ethanol is = 0.9567 mol
I think information dose not enough
Answer:
D.
because her right ear was closer to Michelle, who was the source of the sound
<h2>Answer:</h2>
The correct answer is
A) Regular operation
<h2>
Explanation:</h2>
Even those workplaces that have established LO/TO processes face challenges, including: Lack of specific procedures written for each piece of equipment identifying all energy sources and energy isolation devices. Lack of comprehensive safety training for everyone in the workplace. Incorrect tag use.
So, regular operation is the primary cause of LO/TO accidents.
1. Answer;
- Exothermic reaction
Explanation;
-Exothermic reactions are types of chemical reactions in which heat energy is released to the surroundings. Since enthalpy change is the difference between the energy of products an that of reactants. It means that in an exothermic reaction the energy of products is less than that of products. In this case an energy of 315kJ is released to the surroundings.
2. Answer;
Conserved
-The total amount of energy before and after a chemical reaction is the same. Thus, energy is conserved.
Explanation;
-According to the law of conservation of energy, energy is neither created nor destroyed. Energy may change form during a chemical reaction. For example, energy may change form from chemical energy to heat energy when gas burns in a furnace. However, the exact amount of energy remains after the reaction as before, which is true for all chemical reactions.