Is by turning a few seconds before
Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
Answer:
A complex ion contains a central metal ion bound to one or more ligands
Explanation:
A complex ion is consists of a central atom or ion, that is usually metallic, called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents.
An example of a complex ion is
[Co(NH3)6]3+
Please go through the attached file for a proper representation of the complex ion.
The blue color of copper (ii) sulfate will change to green, yellow, orange ,red and then a dark red or brown.
Glucose is a reducing sugar; reducing sugars are sugar that forms an aldehyde or ketone in the presence of an alkaline solution. Reducing sugars reduce the blue copper sulfate from the Benedict's solution to a red brown copper sulfide; which is seen as the precipitate and is responsible for the color change.
Answer:
5
Explanation:
Firstly, we convert what we have to percentage compositions.
There are two parts in the molecule, the sulphate part and the water part.
The percentage compositions is as follows:
Sulphate- (103.74)/(103.74 + 58.55) × 100% = apprx 64%
The water part = 100 - 64 = 36%
Now, we divide the percentages by the molar masses.
For the CuSO4 molar mass is 64 + 32 + 4(16) = 160g/mol
For the H2O = 2(1) + 16 = 18g/mol
Now we divide the percentages by these masses
Sulphate = 64/160 = 0.4
Water = 36/18 = 2
The ratio is thus 0.4:2 = 1:5
Hence, there are 5 water molecules.