<span>1. Suppose that a family has an equally likely chance of having a cat or a dog. If they have two pets, they could have 1 dog and 1 cat, they could have 2 dogs, or they could have 2 cats.
What is the theoretical probability that the family has two dogs or two cats?
25% chance
</span><span>2. Describe how to use two coins to simulate which two pets the family has.
</span>
You could use the coins to simulate which pet the family has by flipping them and having head be dog and tails be cat (or vice-versa).
<span>3. Flip both coins 50 times and record your data in a table like the one below.
</span><span>Based on your data, what is the experimental probability that the family has two dogs or two cats?
</span>
Based on the results, I concluded that for Heads, Heads (which could be dogs or cats) there was a 24% chance and for Tails, Tails there was a 26% chance
<span>4. If the family has three pets, what is the theoretical probability that they have three dogs or three cats?
1/8 chance (accidentally messed up there) or 12.5%
</span><span>5. How could you change the simulation to generate data for three pets?
</span><span>
To flip 3 coins and add more spots on the chart.
I hope that this helps because it took a while to write out. If it does, please rate as Brainliest
</span>
Answer:
Step-by-step explanation: -4x subtract -4x and that would be 0 I don’t know the rest
Answer: 9 girls
Step-by-step explanation: 8 originally. 8-5 is 3. 6 more come. 3 + 6 Is 9. So 9. Also nice picture
Answer:
39 degrees
Step-by-step explanation:
97+44= 141
141 - 180 = 39
Answer:
Alma is correct.
Step-by-step explanation:
It is a greater change to roll a 1 or a 5 then both. The chances of rolling both can be a bit high but it is also an easier chance that you will roll one of the other.
If you have 2 dice. To roll a 1 and a 5 you only get one change. But to roll one or the other you have 2 different chances. Therefore if you were to roll both dice you have a higher chance to roll a 1 or a 5 with having two dice.