<span>$11.36- would be the correct answer, hope this helps. merry Christmas & Happy Holidays! =)</span>
Answers:
- a) 15000 represents the starting amount
- b) The decay rate is 16%, which means the car loses 16% of its value each year.
- c) x is the number of years
- d) f(x) is the value of the car after x years have gone by
========================================================
Explanation:
We have the function f(x) = 15000(0.84)^x. If we plug in x = 0, then we get,
f(x) = 15000(0.84)^x
f(0) = 15000(0.84)^0
f(0) = 15000(1)
f(0) = 15000
In the third step, I used the idea that any nonzero value to the power of 0 is always 1. The rule is x^0 = 1 for any nonzero x.
So that's how we get the initial value of the car. The car started off at $15,000.
-------------
The growth or decay rate depends entirely on the base of the exponential, which is 0.84; compare it to 1+r and we see that 1+r = 0.84 solves to r = -0.16 which converts to -16%. The negative indicates the value is going down each year. So we have 16% decay or the value is going down 16% per year.
------------
The value of x is the number of years. In the first section, x = 0 represented year 0 or the starting year. If x = 1, then one full year has passed by. For x = 2, we have two full years pass by, and so on.
------------
The value of f(x) is the value of the car after x years have gone by. We found that f(x) = 15000 when x = 0. In other words, at the start the car is worth $15,000. Plugging in other x values leads to other f(x) values. For example, if x = 2, then you should find that f(x) = 10584. This means the car is worth $10,584 after two years.
A. Alright, we want to multiply one equation by a constant to make it cancel out with the second. Since the first equation has a "blank" y, let's multiply the first equation by <em>2</em>.
3x-y=0 → 2(3x-y=0) = 6x - 2y = 0
5x+2y=22
The answer for this part would be: 6x - 2y = 0 and 5x + 2y = 22
B. So now we combine them:
6x - 2y = 0
+ + +
5x + 2y = 22
= = =
11x + 0 = 22 ← The answer
C. Now that we have the equation 11x = 22, we solve for x
11x = 22 ← Divide both sides by 11
x = 2 ← The answer
D. Now that we have x=2, we plug that back in to 5x+2y=22 and solve for y:
5(2)+2y = 22
10 + 2y = 22
2y = 12
y = 6
<u>Therefore, the solution to this problem is x = 2 and y = 6</u>
Answer:
$116.84 Exactly
Step-by-step explanation: