Answer:
A balanced chemical equation must always include coefficients on every reactant and product.
Explanation:
<u>A balanced chemical equation does not need to include coefficients on every reactant and product.</u>
For example, below is a balanced chemical equation in which the reactants and the products have no coefficients whatsoever:
NaOH(aq) + HCl (aq) -----> NaCl (s) + H2O (l)
<em>Of course, a properly written chemical equation must include the states of matter of all the substances in the reaction and the number of atoms of each element must balance both in the reactant and product sides of the equation. Generally, a balanced chemical equation must obey the law of conservation of matter which opines that matter can neither be created nor destroyed but can only be converted from one form to another. </em>
Hence, that a balanced chemical equation must always include coefficients on every reactant and product is not true.
Answer:
Here's what I get
Explanation:
1. Write the chemical equation
CH₃COO⁻ + H₂O ⇌ CH₃COOH + OH⁻; Kₐ = 2 × 10⁻⁵
Let's rewrite the equation as
A⁻ + H₂O ⇌ HA + OH⁻
2. Calculate Kb

3. Set up an ICE table
A⁻ + H₂O ⇌ HA + OH⁻
I/mol·L⁻¹: 0.35 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 0.35-x x x
4. Solve for x
![\dfrac{\text{[HA ][OH$^{-}$]}}{\text{[A$^{-}$]}} = \dfrac{x^{2}}{0.35-x} = 5 \times 10^{-10}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7B%5BHA%20%5D%5BOH%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%20%3D%20%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.35-x%7D%20%3D%205%20%5Ctimes%2010%5E%7B-10%7D)
Check for negligibility,
![\dfrac{\text{[HA]}}{K_{\text{b}}} = \dfrac{0.35}{5 \times 10^{-10}} = 7 \times 10^{8}> 400\\\\\therefore x \ll 0.35\\\\\dfrac{x^{2}}{0.35} = 5 \times 10^{-10}\\\\x^{2} = 0.35 \times 5 \times 10^{-10} = 1.8\times 10^{-10}\\\\x = \sqrt{1.8\times 10^{-10}} = \mathbf{1 \times 10^{-5}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7B%5BHA%5D%7D%7D%7BK_%7B%5Ctext%7Bb%7D%7D%7D%20%3D%20%5Cdfrac%7B0.35%7D%7B5%20%5Ctimes%2010%5E%7B-10%7D%7D%20%3D%207%20%5Ctimes%2010%5E%7B8%7D%3E%20400%5C%5C%5C%5C%5Ctherefore%20x%20%5Cll%200.35%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.35%7D%20%3D%205%20%5Ctimes%2010%5E%7B-10%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%200.35%20%5Ctimes%205%20%5Ctimes%2010%5E%7B-10%7D%20%3D%201.8%5Ctimes%2010%5E%7B-10%7D%5C%5C%5C%5Cx%20%3D%20%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-10%7D%7D%20%3D%20%5Cmathbf%7B1%20%5Ctimes%2010%5E%7B-5%7D%7D)
5. Calculate the pOH
[OH⁻] = 1 × 10⁻⁵ mol·L⁻¹
pOH = -log[OH⁻] = -log(1 × 10⁻⁵) = 4.88
6. Calculate the pH.
pH + pOH = 14.00
pH + 4.88 = 14.00
pH = 9.12
Note: The answer differs from that given by Silberberg because you used only one significant figure for the Kₐ of acetic acid.
Answer:
The dense vapours of carbon tetrachloride forms a protective layer on the burning objects and avoids the oxygen or air to come in contact with the fire from the burning objects and provides incombustible vapours.
Explanation:
Hope This Helps
Happy Hoildays
~Zero~
Rock is a combination of two or more minerals, and it does not possess any specific chemical composition. It is present naturally in the environment. Some examples of rocks are limestone, granite, etc.,Limestone may contain minerals like calcite and aragonite. Each mineral has a specific chemical composition with a well defined crystalline structure.
Therefore, the correct option would be a. rock as rock is the naturally occurring solid mass made up of different types of minerals.