To determine the temperature of the gas, we need to assume ideal gas to use the equation PV=nRT where P represents the pressure, V is the volume, n is the number of moles, T is the temperature and R is the universal gas constant. We calculate as follows:
PV = nRT
T = PV / nR
T = (1.26 atm) ( 208 L ) / 0.08205 L-atm/mol-K ( 9.95 mol )
T = 321.02 K
Hope this answers the question.
<span>The solid lines between N and Mg are actually ionic bonds. N has 5 valence electrons (2 of which are paired). Of the 3 that are unpaired, 2 are part of covalent bonds with adjacent carbon atoms. N accepts an extra electron to complete its octet, but gets a formal charge of -1. This allows for formation of an ionic bond with Mg, which is +2. Two of these charged N atoms therefore neutralize the charge of the central Mg. As for the coordinate (dative) covalent bonds, Mg has empty orbitals - the ionic bonds with the charged N atoms give it only 4/8 possible valence electrons.
The other two N atoms (dotted lines) have a formal charge of 0 since they form three covalent bonds with adjacent carbon atoms, but they still have a lone pair. Therefore, just to improve stability, each of these N atoms can "donate" its lone pair to Mg in order to complete its octet.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
<span>Those characteristic belong to an ionic compountd. Ionic compounds have strong bonds between their atoms (ionic bond is the strongest molecular bond) which conferes this kind of compounds high melting point, wich 9811 K is. Ionic compounds do not transmit current, because they do not have free electrons, like metals do, then they are poor conductors as solid. Ionic compounds dissolve in water into ions which are charges that can move, becoming then good conductors. The structure of ionic compound is a net of cristals which make them hard and brittle. Then, the answer i s option (4) an ionic compound.</span>
Answer:
II. The reaction is exothermic.
III. The enthalpy term would be different if the water formed was gaseous.
Explanation:
For the reaction:
C₂H₅OH(l) + 3O₂(g) → 2CO₂(g) + 3H₂O(l)
The ΔH is -1.37×10³ kJ. As the change in enthalpy is <0,<em> II. The reaction is exothermic.</em>
The ΔH formation of a compound is different if the chemical is in liquid or gaseous phase. For that reason: <em>III. The enthalpy term would be different if the water formed was gaseous.</em>
<em></em>
I hope it helps!