Answer:
The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Explanation:
Water potential = Pressure potential + solute potential


We have :
C = 0.15 M, T = 273.15 K
i = 1
The water potential of a solution of 0.15 m sucrose= 
(At standard temperature)


The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Here, as they both are physical things without any magnetic property & density difference, screening would be best.
In short, Your Answer would be Option C
Hope this helps!
Theoretical Yield is an Ideal yield with 100 % conversion of reactant to product. It is in fact a paper work.
While,
Actual Yield is the yield which is obtained experimentally. It is always less than theoretical yield because it is not possible to have 100% conversion of reactants into products. Even some amount of product is lost while handling it during the process.
Percentage Yield is Calculated as,
%age Yield = Actual Yield / Theoretical Yield × 100
Data Given:
Actual Yield = 0.104 g
Theoretical Yield = 0.110 g
Putting Values,
%age Yield = 0.104 g / 0.110 g × 100
%age Yield = 94.54 %
<u>Answer:</u> The value of
for the final reaction is 
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> 
<u>Equation 2:</u> 
The net equation follows:

As, the net reaction is the result of the addition of reverse of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of inverse of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of
for the final reaction is 
Answer:
i assume that it would be a gametophyte.
Explanation: