To calculate how many photons are in a certain amount of energy (joules) we need to know how much energy is in one photon.
Start by using two equations:
Energy of a photon = Frequency * Planck's constant (6.626 * 10^(-34) J-s)
Speed of light (constant 3 * 10^8 m/s) = Frequency * Wavelength
Which means:
frequency = Speed of Light / Wavelength
So energy of a photon = (Speed of light * Planck's constant)/(Wavelength)
You may have seen this equation as E = hc/<span>λ</span>
We have a wavelength of 691 nm or 691 * 10^-9 meters
So we can plug in all of our knowns:
E = (6.626 * 10^(-34) J-s) * (3.00 * 10^8 m/s) / (691 * 10^-9 m) =
2.88 * 10^(-19) joules per photon
Now we have joules per photon, and the total number of joules (0.862 joules)
,so divide joules by joules per photon, and we have the number of photons:
0.862 J/ (2.88 * 10^(-19) J/photon) = 3.00 * 10^18 photons.
<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2Al₂O₃ → 4Al + 3O₂
[Given] 20 mol Al₂O₃
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Al₂O₃ → 4 mol Al
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4:Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
Since our final answer already has 1 sig fig, there is no need to round.
The thing that they have in common is that they are all non metals
Given the volume of HCl solution = 30.00 mL
Molarity of HCl solution = 0.1000 M
Molarity, moles and volume are related by the equation:
Molarity = 
Converting volume of HCl from mL to L:

Calculating moles of HCl from volume in L and molarity:

The final moles would be reported to 4 sig figs. So the correct answer will be 0.03000 mol HCl
Correct option: C. 0.03000mol