The radius of a sphere is calculated through the equation,
V = 4πr³ / 3
where r is the radius. Substituting the radius given in the equation,
V = 4π x (3,760.4 miles)³ / 3 = 2.23 x 10^11 miles
Thus, the volume of the planet Venus is calculated to be 2.23 x 10^11 miles, approximately.
Given:
Sample Mean <span>= 30<span>
Sample size </span><span><span><span>= 1000</span></span><span>
</span></span></span>Population Standard deviation or <span><span><span>σ<span>=2</span></span><span>
</span></span>Confidence interval </span><span>= 95%</span>
to compute for the confidence interval
Population Mean or <span>μ<span><span>= sample mean ± (</span>z×<span>SE</span>)</span></span>
<span><span>where:</span></span>
<span><span>SE</span>→</span> Standard Error
<span><span>SE</span>=<span>σ<span>√n</span>= 30</span></span>√1000=0.9486
Critical Value of z for 95% confidence interval <span>=1.96</span>
<span>μ<span>=30±<span>(1.96×0.9486)</span></span><span>
</span></span><span>μ<span>=30±1.8594</span></span>
Upper Limit
<span>μ <span>= 30 + 1.8594 = 31.8594</span></span>
Lower Limit
<span>μ <span>= 30 − 1.8594 = <span>28.1406</span></span></span>
<span><span><span>
</span></span></span>
<span><span><span>answer: 28.1406<u<31.8594</span></span></span>
? can be any number except for 3 or -2 as it is already used in (3,4), (-2,-5)
Answer:
49+0.89c
Step-by-step explanation:
This should be the answer good luck :)
Answer:
(a) 169.1 m
Step-by-step explanation:
The diagram shows you the distance (x) will be shorter than 170 m, but almost that length. The only reasonable answer choice is ...
169.1 m
__
The relevant trig relation is ...
Cos = Adjacent/Hypotenuse
The leg of the right triangle adjacent to the marked angle is x, and the hypotenuse is 170 m. Putting these values into the equation, you have ...
cos(6°) = x/(170 m)
x = (170 m)cos(6°) ≈ (170 m)(0.994522) ≈ 169.069 m
The horizontal distance covered is about 169.1 meters.
_____
<em>Additional comment</em>
Expressed as a percentage, the slope of this hill is tan(6°) ≈ 10.5%. It would be considered to be a pretty steep hill for driving.