Answer:
C
Explanation:
I hope this is correct and have a great day
Answer:
the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Explanation:
Given: radius of disk, R = 2.0 cm = 2 × 10⁻² cm, surface charge density,σ = 6.3 μC/m² = 6.3 × 10⁻⁶ C/m², distance on central axis, z = 12 cm = 12 × 10⁻² cm.
The electric field, E at a point on the central axis of a charged disk is given by E = σ/ε₀(
)
Substituting the values into the equation, it becomes
E = σ/ε₀(
) = 6.3 × 10⁻⁶/8.854 × 10⁻¹²(
) = 7.12 × 10⁵(
) = 7.12 × 10⁵(1 - 0.9864) = 7.12 × 10⁵ × 0.0136 = 0.0968 × 10⁵ = 9.68 × 10³ N/C = 9.68 kN/C
Therefore, the electric field at Z = 12 cm is E = 9.68 × 10³ N/C = 9.68 kN/C
Ibuprofen is synthesized by reacting ethyl 2-(4-isobutylphenyl)acetate with base, the base abstracts the acidic proton and enolate is formed which on reaction with diethyl carbonate generates diethyl 2-(4-isobutylphenyl)malonate
(A). diethyl 2-(4-isobutylphenyl)malonate on treatment with Base again looses the acidic proton and forms enolate. The enolate with treatment with Methyl Iodide yields diethyl 2-(4-isobutylphenyl)-2-methylmalonate
(B). diethyl 2-(4-isobutylphenyl)-2-methylmalonate on
hydrolysis give
Ibuprofen.
A bimolecular reaction is always a second-order reaction, but a second-order reaction is not always a bimolecular reaction.
The most important thing to take note of is that molecularity of a reaction is a concept applicable to only elementary reactions, meaning non-complex. In a way, elementary reactions are basic and achieved in one step. Complex reactions involve intermediate steps before achieving the desired reaction.
Molecularity is equal to the sum of the coefficients of the reactants, so two reactants give a second-order bimolecular reaction. However, second-order reactions can involve more than two reactants especially in complex reactions.
B
While nuclear energy does not pollute the environment, it poses the risk of radiation which is harmful to organisms because it causes lethal mutations.
Explanation:
Nuclear fission, for example, releases neutrons and other particles (at very high speeds) that can ionize materials including DNA. This will induce mutations of DNA most of which are usually lethal to organisms. Gamma and X- rays are also produced by fusion reactions and if exposed to organisms also cause mutations on DNA through double stranded breaks. Therefore, the risk of an accident of a nuclear reactor can have immense ramifications on the ecosystems.
Learn More:
For merits and demerits of nuclear energy check out;
brainly.com/question/1161965
brainly.com/question/3760263
brainly.com/question/8608522
#LearnWithBrainly