1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vaieri [72.5K]
3 years ago
14

Determine the constant speed at which the cable at A must be drawn in by the motor in order to hoist the load 6 m in 1.5s

Engineering
1 answer:
zlopas [31]3 years ago
5 0

Answer:

4m/s

Explanation:

We know that power supplied by the motor should be equal to the rate at which energy is increased of the mass that is to be hoisted

Mathematically

Power_{motor} } =\frac{Energy }{time}\

We also know that Power = force x velocity      ..................(i)

The force supplied by the motor should be equal to the weight (mg) of the block since we lift the against a force equal to weight of load

=> power = mg x Velocity........(ii)

While hoisting the load at at constant speed only the potential energy of the mass increases

Thus Potential energy = Mass x g x H...................(iii)

where

g = accleration due to gravity (9.81m/s2)

H = Height to which the load is hoisted  

Equating equations (ii) and (iii) we get

m x g x v = \frac{mgh}{t}

thus we get v = H/t

Applying values we get

v = 6/1.5 = 4m/s

You might be interested in
The parts of a feature control frame are the tolerance value, the datum references, and the
Elan Coil [88]

Answer:

d

Explanation:

4 0
3 years ago
A steel bar is 150 mm square and has a hot-rolled finish. It will be used in a fully reversed bending application. Sut for the s
Xelga [282]

Answer:

See explanation

Explanation:

Given The bar is square and has a hot-rolled finish. The loading is fully reversed bending.

Tensile Strength

Sut: 600 MPa

Maximum temperature

Tmax: 500 °C

Bar side dimension

b: 150 mm

Alternating stress

σa: 100 MPa

Reliability

R: 0.999 Note 1.

Assumptions Infinite life is required and is obtainable since this ductile steel will have an endurance limit. A reliability factor of 99.9% will be used.

Solution See Excel file Ex06-01.xls.

1 Since no endurance-limit or fatigue strength information is given, we will estimate S'e based on the ultimate tensile strength using equation 6.5a.

S'e: 300 MPa = 0.5 * Sut

2 The loading is bending so the load factor from equation 6.7a is

Cload: 1

3 The part size is greater than the test specimen and the part is not round, so an equivalent diameter based on its 95% stressed area must be determined and used to find the size factor. For a rectangular section in nonrotating bending, the A95 area is defined in Figure 6-25c and the equivalent diameter is found from equation 6.7d

A95: 1125 mm2 = 0.05 * b * b Note 2.

dequiv: 121.2 mm = SQRT(A95val / 0.0766)

and the size factor is found for this equivalent diameter from equation 6.7b, to be

Csize: 0.747 = 1.189 * dequiv^-0.097

4 The surface factor is found from equation 6.7e and the data in Table 6-3 for the specified hot-rolled finish.

Table 6-3 constants

A: 57.7

b: -0.718 Note 3.

Csurf: 0.584 = Acoeff * Sut^bCoeff

5 The temperature factor is found from equation 6.7f :

Ctemp: 0.710 = 1 - 0.0058 * (Tmax - 450)

6 The reliability factor is taken from Table 6-4 for R = 0.999 and is

Creliab: 0.753

7 The corrected endurance limit Se can now be calculated from equation 6.6:

Se: 69.94 MPa = Cload * Csize * Csurf * Ctemp *

Creliab * Sprme

Let

Se: 70 MPa

8 To create the S-N diagram, we also need a value for the estimated strength Sm at 103 cycles based on equation 6.9 for bending loading.

Sm: 540 MPa = 0.9 * Sut

9 The estimated S-N diagram is shown in Figure 6-34 with the above values of Sm and Se. The expressions of the two lines are found from equations 6.10a through 6.10c assuming that Se begins at 106 cycles.

b: -0.2958 Note 4.

a: 4165.7

Plotting Sn as a function of N from equation 6.10a

N Sn (MPa)

1000 540 =aa*B73^bb

2000 440

4000 358

8000 292

16000 238

32000 194

64000 158

128000 129

256000 105

512000 85

1000000 70

FIGURE 6-34. S-N Diagram and Alternating Stress Line Showing Failure Point

10 The number of cycles of life for any alternating stress level can now be found from equation 6.10a by replacing σa for Sn.

At N = 103 cycles,

Sn3: 540 MPa = aa * 1000^bb

At N = 106 cycles,

Sn6: 70 MPa = aa * 1000000^bb

The figure above shows the intersection of the alternating stress line (σa = 100 MPa) with the failure line at N = 3.0 x 105 cycles.

8 0
2 years ago
An energy system can be approximated to simply show the interactions with its environment including cold air in and warm air out
Elenna [48]

Answer: The energy system related to your question is missing attached below is the energy system.

answer:

a) Work done = Net heat transfer

  Q1 - Q2 + Q + W = 0

b)  rate of work input ( W ) = 6.88 kW

Explanation:

Assuming CPair = 1.005 KJ/Kg/K

<u>Write the First law balance around the system and rate of work input to the system</u>

First law balance ( thermodynamics ) :

Work done = Net heat transfer

Q1 - Q2 + Q + W = 0 ---- ( 1 )

rate of work input into the system

W = Q2 - Q1 - Q -------- ( 2 )

where : Q2 = mCp T  = 1.65 * 1.005 * 293 = 485.86 Kw

             Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw

              Q = 18 Kw

Insert values into equation 2 above

W = 6.88 Kw

5 0
2 years ago
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
Why do bridges collapse?
Reika [66]

Hi! bridges could have been collapse due to an error made by the engineers during construction.

8 0
2 years ago
Read 2 more answers
Other questions:
  • The army has cars and boats etc right
    7·1 answer
  • A pressure cylinder has an outer diameter 200 mm, maximum external pressure 4 MPa, and maximum allowable shear stress 27.5 MPa.
    13·1 answer
  • Verify the below velocity distribution describes a fluid in a state of pure rotation. What is the angular Velocity? (a)-Vx = -1/
    7·1 answer
  • Which of the following statements define drug abuse
    7·1 answer
  • Very thin films are usually deposited under vacuum conditions to prevent contamination and ensure that atoms can fly directly fr
    14·1 answer
  • An inverting amplifier with +11 V supply voltages normally has a sinusoidal output of 10 Vpp. When checking the circuit with an
    11·1 answer
  • Design complementary static CMOS circuits with minimized number of transistors to realize the following Boolean functions (hint:
    13·1 answer
  • A demand factor of _____ percent applies to a multifamily dwelling with ten units if the optional calculation method is used.
    14·1 answer
  • Coving is a curved edge between a floor and a wall.<br> O True<br> O False
    13·2 answers
  • 3. If nothing can ever be at absolute zero, why does the concept exist?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!