1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
3 years ago
14

A light aircraft with a wing area of 200 ft^2 and a weight of 2000 lb has a lift coefficient of 0.39 and a drag coefficient of 0

.06. Determine the power required to maintain level flight.
Engineering
1 answer:
Gnoma [55]3 years ago
6 0

Answer: power required to maintain level flight=82.20hp

Explanation:

Given

Area = 200 ft^2

Weight = 2000 lb

Cl( Lift coefficient)= 0.39

Cd( Drag coefficient) = 0.06  

The density ρ of air at standard atmospheric  pressure = 2.38 X 10^-3 slugs/ft^3

For Equilibrium to be maintained during flight conditions, the lift force must be balanced by the weight of the aircraft such that

Lift force  = Weight of aircraft

(1/2)ρAU²Cl= W

1/2X 2.38 X 10^-3 X 200 X U² X 0.39 = 2000

U²= 2000 X 2 / 2.38 X 10^-3 X 200 X 0.39

U=\sqrt{21,547.08}

Velocity, U= 146.7892ft/s

Drag force of the velocity can be deduced from the formulae

Cd= Drag force(D) /1/2 ρU²A

Drag force=1/2 ρU²ACd

D=1/2 x (2.38 X 10^-3 slugs/ft^3) x (146.7892ft/s)² x 200 ft^2 x 0.06

D=307.69

Drag force= 308lb

power required to maintain level flight is given as

P = Drag force x Velocity = D x U

=308lb X  146.7892ft/s

=45,211.0736lb.ft/s

Changing to hp we have that

1 Horsepower, hp = 550 ft lbf/s

??=45,211.0736lb.ft/s

45,211.0736lb.ft/s/ 550 ft lbf/s= 82.20hp

You might be interested in
A nozzle receives an ideal gas flow with a velocity of 25 m/s, and the exit at 100 kPa, 300 K velocity is 250 m/s. Determine the
Margaret [11]

Given Information:

Inlet velocity = Vin = 25 m/s

Exit velocity = Vout = 250 m/s

Exit Temperature = Tout = 300K

Exit Pressure = Pout = 100 kPa

Required Information:

Inlet Temperature of argon = ?

Inlet Temperature of helium = ?

Inlet Temperature of nitrogen = ?

Answer:

Inlet Temperature of argon = 360K

Inlet Temperature of helium = 306K

Inlet Temperature of nitrogen = 330K

Explanation:

Recall that the energy equation is given by

$ C_p(T_{in} - T_{out}) = \frac{1}{2} \times (V_{out}^2 - V_{in}^2) $

Where Cp is the specific heat constant of the gas.

Re-arranging the equation for inlet temperature

$ T_{in}  = \frac{1}{2} \times \frac{(V_{out}^2 - V_{in}^2)}{C_p}  + T_{out}$

For Argon Gas:

The specific heat constant of argon is given by (from ideal gas properties table)

C_p = 520 \:\: J/kg.K

So, the inlet temperature of argon is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{520}  + 300$

$ T_{in}  = \frac{1}{2} \times 119  + 300$

$ T_{in}  = 360K $

For Helium Gas:

The specific heat constant of helium is given by (from ideal gas properties table)

C_p = 5193 \:\: J/kg.K

So, the inlet temperature of helium is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{5193}  + 300$

$ T_{in}  = \frac{1}{2} \times 12  + 300$

$ T_{in}  = 306K $

For Nitrogen Gas:

The specific heat constant of nitrogen is given by (from ideal gas properties table)

C_p = 1039 \:\: J/kg.K

So, the inlet temperature of nitrogen is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{1039}  + 300$

$ T_{in}  = \frac{1}{2} \times 60  + 300$

$ T_{in}  = 330K $

Note: Answers are rounded to the nearest whole numbers.

5 0
2 years ago
A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 12. Calculate the pitch diameter, circular p
torisob [31]

Answer:

Explanation:

Given:

Tooth Number, N = 24  

Diametral pitch pd = 12

pitch diameter, d = N/pd = 24/12 = 2in

circular pitch, pc = π/pd  = 3.142/12 = 0.2618in

Addendum, a  = 1/pd = 1/12 =0.08333in

Dedendum, b = 1.25/pd = 0.10417in

Tooth thickness, t = 0.5pc = 0,5 * 0.2618  = 0.1309in

Clearance, c = 0.25/pd = 0.25/12 = 0.02083in

5 0
3 years ago
Read 2 more answers
The thermal efficiency of two reversible power cycles operating between the same thermal reservoirs will a)- depend on the mecha
mestny [16]
C ,, i’m pretty sure .
4 0
3 years ago
1. Examine the following circuit. Find RT, I3, R1, R2, R3, V1, V2 and V3. Show all of your work clearly below.
Mkey [24]

Explanation:

Ohm's law is used here. V = IR, and variations. The voltage across all elements is the same in this parallel circuit. (V1 =V2 =V3)

The total supply current is the sum of the currents in each of the branches. (It = I1 +I2 +I3)

Rt = (8 V)/(8 A) = 1 Ω . . . . supply voltage divided by supply current

I3 = 8A -3A -4A = 1 A . . . . supply current not flowing through other branches

R1 = (8 V)/(3 A) = 8/3 Ω

R2 = (8 V)/(4 A) = 2 Ω

R3 = (8 V)/(I3) = (8 V)/(1 A) = 8 Ω

V1 = V2 = V3 = 8 V

6 0
2 years ago
You must signal [blank] before any turn or lane change.
Soloha48 [4]
A. 5 seconds :) Good luck!
5 0
3 years ago
Other questions:
  • The boiler pressure is 38bar and the condenser pressure 0.032 bar.The saturated steam is superheated to 420 oC before entering t
    8·1 answer
  • A strip of AISI 304 stainless steel, 2mm thick by 3cm wide, at 550°C, continuously enters a cooling chamber that removes heat at
    12·1 answer
  • Is it acceptable to mix used absorbents.
    8·2 answers
  • Water enters an ice machine at 55°F and leaves as ice at 25°F. If the COP of the ice machine is 2.45 during this operation, dete
    7·1 answer
  • calculate the magnitude of the force acting on the pin at D. Pin C is fixed in DE and bears against the smooth slot in the trian
    9·1 answer
  • La Patrulla Fronteriza de los Estados Unidos analiza la compra de un helicóptero nuevo para la vigilancia aérea de la frontera d
    14·1 answer
  • Name the four ways in which heat is transferred from a diesel engine
    7·1 answer
  • A cylindrical 1040 steel rod having a minimum tensile strength of 865 MPa (125,000 psi), a ductility of at least 10%EL, and a fi
    7·1 answer
  • -Electronic control modules can easily evaluate the voltage and current levels of circuits to which they are connected and deter
    15·1 answer
  • How do all the cars work to move?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!