1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitrij [34]
3 years ago
11

A way to charge insulators and conductors (the answer in 7 alphabets)

Physics
1 answer:
Fudgin [204]3 years ago
3 0

Answer

RUBBING

Explanation:

You might be interested in
Jose is loading his luggage into his car so that he can go to visit his grandmother. He lifts his suitcase up a 10 m staircase i
maxonik [38]

Answer:

The work done on the suitcase is, W = 600 J

Explanation:

Given,

The average force exerted by Jose on his suitcase,  F = 60 N

Jose carried the suitcase to a distance, S = 10 m

The work done on the suitcase is given by the relation

                           <em>W = F x S</em>

Substituting the given values in the above equation,

                            W = 60 N x 10 m

                                 = 600 J

Hence, the work done on the suitcase is, W = 600 J

3 0
3 years ago
On a safari, a team of naturalists sets out toward a research station located 4.63 km away in a direction 38.7 ° north of east.
Talja [164]

This is a vector subraction problem.

5 0
3 years ago
Read 2 more answers
In a carrom game, a striker weighs three times the mass of the other pieces, the carrom men and the queen, which each have a mas
Mila [183]

Answer:

- The final velocity of the queen is (3/2) of the initial velocity of the striker. That is, (3V/2)

- The final velocity of the striker is (1/2) of the initial velocity of the striker. That is, (V/2)

Hence, the relative velocity of the queen with respect to the striker after collision

= (3V/2) - (V/2)

= V m/s.

Explanation:

This is a conservation of Momentum problem.

Momentum before collision = Momentum after collision.

The mass of the striker = M

Initial Velocity of the striker = V (+x-axis)

Let the final velocity of the striker be u

Mass of the queen = (M/3)

Initial velocity of the queen = 0 (since the queen was initially at rest)

Final velocity of the queen be v

Collision is elastic, So, momentum and kinetic energy are conserved.

Momentum before collision = (M)(V) + 0 = (MV) kgm/s

Momentum after collision = (M)(u) + (M/3)(v) = Mu + (Mv/3)

Momentum before collision = Momentum after collision.

MV = Mu + (Mv/3)

V = u + (v/3)

u = V - (v/3) (eqn 1)

Kinetic energy balance

Kinetic energy before collision = (1/2)(M)(V²) = (MV²/2)

Kinetic energy after collision = (1/2)(M)(u²) + (1/2)(M/3)(v²) = (Mu²/2) + (Mv²/6)

Kinetic energy before collision = Kinetic energy after collision

(MV²/2) = (Mu²/2) + (Mv²/6)

V² = u² + (v²/3) (eqn 2)

Recall eqn 1, u = V - (v/3); eqn 2 becomes

V² = [V - (v/3)]² + (v²/3)

V² = V² - (2Vv/3) + (v²/9) + (v²/3)

(4v²/9) = (2Vv/3)

v² = (2Vv/3) × (9/4)

v² = (3Vv/2)

v = (3V/2)

Hence, the final velocity of the queen is (3/2) of the initial velocity of the striker and is in the same direction.

The final velocity of the striker after collision

= u = V - (v/3) = V - (V/2) = (V/2)

The relative velocity of the queen withrespect to the striker after collision

= (velocity of queen after collision) - (velocity of striker after collision)

= v - u

= (3V/2) - (V/2) = V m/s.

Hope this Helps!!!!

3 0
3 years ago
Read 2 more answers
a transmission-line cable, of length 3 km, consists of 19 strands of identical copper conductors, each 1.5 mm in diameter. becau
Ivan

the resistance of the cable is 582.9 ohms

we are given the length of the cable which is  3 km,  of  1.5 mm in, the diameter  and resistivity of copper which is 1.72 m

The formula  we are referring to for calculating the resistance of the  cable is

R = ρl/A.

As there are 19 strands of copper conductors, so the resistance will be

R = 19( ρl/A)

Here  ρ is the resisitivity =  1.72 , l is the length  = 3(1+0.05)*10³3= 3150 m

A=pie/4(1.5 x 10⁻³)^2 =1.766 x 10⁻⁶ =1.766 x 10^-6

Substituting the values in the formula  we  get

R = 19 ( 1.72*3150 )/1.766 x 10⁻⁶

 = 582.9 ohm

To know more about resistance refer to the linkhttps://brainly.com/question/14547003?referrer=searchResults.

#SPJ4

6 0
1 year ago
A solid object has a mass of 104 kg and a volume of 1,278 m3. What is its density?
MrMuchimi
The density is 81.4 g/m3. Before you start plugging numbers into the density formula (D=M/V), you should convert 104 kg to grams, which ends up being 104,000 grams. Then you can plug in the 104,000 grams and 1,278 m3 into the formula. When you divide the mass by the volume, you get a really long decimal, which you can round to 81.4 g/m3, or whatever place your teacher wants you to round to.
4 0
3 years ago
Other questions:
  • If electromagnetic radiation a has a lower frequency than electromagnetic radiation b the wavelength of a is
    6·1 answer
  • Consider the following statements:
    11·1 answer
  • How far below an initial straight-line path will a projectile fall in one second
    8·1 answer
  • A copper rod at 25°C is 2.5 m long. How long would it take a sound to move through the rod from one end to another? how would I
    10·2 answers
  • Jayne lifts the barbell 120 cm upwards. She has a mass of 60kg. How much work does she do?
    7·1 answer
  • What is the most common feature on the far side of the Moon?
    8·2 answers
  • 1. calculate agni's average speed during the race.
    9·1 answer
  • Lynn rubs a balloon with a piece of wool, which causes the balloon to pick up some of the electric charges from the wool. Lynn t
    9·2 answers
  • A device known as an optical resonator is used in lasers. An optical resonator consists of an arrangement of mirrors that reflec
    6·1 answer
  • I don't understand when to use the formule with the constant k, and when to use the formula without it.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!