<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
Answer:
They would keep on moving but unless being acted upon or stop slowly because of the friction
Explanation:
Answer:
Explanation:
Let the thickness of the film is t and the refractive index of the material of film is n.
When light travels through a sheet of thickness t, the optical path traveled is nt.
When the path of one of slit is covered by a sheet of thickness t, the optical path becomes
x = ( n - 1) t
As the one fringe is shift, so the optical path changed by one wavelength.
i.e., x = λ
So, λ = ( n - 1) t

Answer:
When the Sun emits more amount of energy than normal, "Solar flares and sunspots" occur, increasing temperature of Earth. Explanation: The Earth's temperature is governed by many factors. One of these factors is 'Solar flare'.
The energy of the wave decreases gradually