Answer:
300m/s
Explanation:
velocity = frequency(wavelength)
Since 10 waves pass a point each second, frequency is 10
therefore, speed = (10)(30 = 300m/s
Answer:
The correct answer is -
A (the entire green box): Chemical Equation
B (the blue box): Reactants
C (the arrow): Reacts to Form
D (the number): Coefficient
E (the purple box): Products
Explanation:
The chemical reaction of burning methane and oxygen is as follows;
Here, the green part A is the chemical equation that includes various parts that are reactants B, methane, and oxygen, C is an arrow that indicates the formation of products.
2 is here coefficient that indicates the moles of the oxygen which forms carbon dioxide and water in box E is products
Answer:
t_total = 23.757 s
Explanation:
This is a kinematics exercise.
Let's start by calculating the distance and has to reach the limit speed of
v = 18.8 m / s
v = v₀ + a t₁
the elevator starts with zero speed
v = a t₁
t₁ = v / a
t₁ = 18.8 / 2.40
t₁ = 7.833 s
in this time he runs
y₁ = v₀ t₁ + ½ a t₁²
y₁ = ½ a t₁²
y₁ = ½ 2.40 7.833²
y₁ = 73.627 m
This is the time and distance traveled until reaching the maximum speed, which will be constant throughout the rest of the trip.
x_total = x₁ + x₂
x₂ = x_total - x₁
x₂ = 373 - 73,627
x₂ = 299.373 m
this distance travels at constant speed,
v = x₂ / t₂
t₂ = x₂ / v
t₂ = 299.373 / 18.8
t₂ = 15.92 s
therefore the total travel time is
t_total = t₁ + t₂
t_total = 7.833 + 15.92
t_total = 23.757 s
Answer:
C)focusing on one goal at a time
Explanation:
Self-modification programs could be regarded as a program that help individual in managing unwanted as well as dysfunctional behavioral responses whenever they are going through a problem and try to deal with it. For instance the dysfunctional behavioral response for someone with a panic attack is avoidance. Some of the the steps that are involved in in a self-modification program are;
✓ specifying target behavior ✓designing a program
✓ gathering data about target behavior
Answer:
gexp = 3.65 m/s²
Explanation:
The value of acceleration due to gravity changes with the altitude. The following formula gives the value of acceleration due to gravity at some altitude from the sea level:
gexp = g(1 - 2h/Re)
where,
gexp = expected value of g at altitude = ?
g = acceleration due to gravity at sea level = 9.8 m/s²
h = altitude = 2000 km = 2 x 10⁶ m
Re = Radius of Earth = 6.37 x 10⁶ m
Therefore,
gexp = (9.8 m/s²)(1 - 2*2 x 10⁶ m/6.37 x 10⁶ m)
<u>gexp = 3.65 m/s²</u>