Lightning rods provide low resistance paths to the ground that’ll be used to conduct the enormous electrical currents when lightning strikes happen. So the system will attempt to carry the harmful electrical current away from it and safely to ground. The system will have the ability to handle enormous electrical currents associated with the lightning strikes, if they contact a material that isn’t a good conductor then the material will suffer massive heat damage. So the lightning rod system is considered the best conductor & this allows the current to flow to the ground without causing any massive heat damage.
Answer:
96%
Explanation:
To find the values of the motor efficiency you use the following formula:

P_o: output power = 864J/0.5min=864J/30s=28.8W
P_i: input power = I*V = (3A)(12V) = 36W
By replacing this values you obtain:

hence, the motor efficiency is about 96%
traslation:
Pentru a găsi valorile eficienței motorului, utilizați următoarea formulă:
P_o: putere de ieșire = 864J / 0.5min = 864J / 30s = 28.8W
P_i: putere de intrare = I * V = (3A) (12V) = 36W
Înlocuind aceste valori obțineți:
prin urmare, eficiența motorului este de aproximativ 96%
Answer:
<em>a. The rock takes 2.02 seconds to hit the ground</em>
<em>b. The rock lands at 20,2 m from the base of the cliff</em>
Explanation:
Horizontal motion occurs when an object is thrown horizontally with an initial speed v from a height h above the ground. When it happens, the object moves through a curved path determined by gravity until it hits the ground.
The time taken by the object to hit the ground is calculated by:

The range is defined as the maximum horizontal distance traveled by the object and it can be calculated as follows:

The man is standing on the edge of the h=20 m cliff and throws a rock with a horizontal speed of v=10 m/s.
a,
The time taken by the rock to reach the ground is:


t = 2.02 s
The rock takes 2.02 seconds to hit the ground
b.
The range is calculated now:

d = 20.2 m
The rock lands at 20,2 m from the base of the cliff

Frequency, f, is how many cycles of an oscillation occur per second and is measured in cycles per second or hertz (Hz). The period of a wave, T, is the amount of time it takes a wave to vibrate one full cycle. These two terms are inversely proportional to each other: f = 1/T and T = 1/f.

Hope It Helps!