Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value
Explanation:
From the question we are told that
The charge on the first sphere is
The charge on the second sphere is
The mass of the second charge is
The distance apart is
The speed of the second sphere is
Generally the total energy possessed by when and are separated by is mathematically represented
Here KE is the kinetic energy which is mathematically represented as
substituting value
And U is the potential energy which is mathematically represented as
substituting values
So
Generally the total energy possessed by when and are separated by is mathematically represented
Here is the kinetic energy which is mathematically represented as
substituting value
And is the potential energy which is mathematically represented as
substituting values
From the law of energy conservation
So
Answer:
He can throw it away from himself.
Explanation:
Newtons Third Law says that everything has an equal, yet opposite reaction on other objects.
Answer:
22 km/h
Explanation:
Given that,
Speed of Xavier, v = 14 km/h
He tosses a set of keys forward on the ground at 8 km/h, v' = 8 km/h
We need to find the speed of the keys relative to the ground. Let it is V.
As both Xavier and the keys are moving in same diretion. The relative speed wrt ground is given by :
V = v+v'
V= 14 + 8
V = 22 km/h
So, the speed of the keys relative to the ground is 22 km/h.
Here,
Load distance (Ld) = 30 cm
Effort distance (Ed) = 60 cm
Load (L) = 200N
Effort (E) = ?
Now, By using formula,
or, E * Ed = L * Ld
or, E * 60 = 200 * 30
or, E = 6000/60
◆ E = 100N
This is a Right answer...
I hope you understand...
Answer:
60a in a circuit with a 12v battery
Explanation:
60a in a circuit with a 12v battery