Let x = John's age now
half of what johns age was 4 years ago: (1/2)(x-4)
is equal to one third of what it will be in 5 years time: (1/3)(x+5)
(1/2)(x-4) = (1/3)(x+5)
3(x-4) = 2(x+5)
3x - 12 = 2x + 10
A financial analyst wanted to estimate the mean annual return on mutual funds. A random sample of 60 funds' returns shows an average rate of 12%. If the population standard deviation is assumed to be 4%, the 95% confidence interval estimate for the annual return on all mutual funds is
A. 0.037773 to 0.202227
B. 3.7773% to 20.2227%
C. 59.98786% to 61.01214%
D. 51.7773% to 68.2227%
E. 10.988% to 13.012%
Answer: E. 10.988% to 13.012%
Step-by-step explanation:
Given;
Mean x= 12%
Standard deviation r = 4%
Number of samples tested n = 60
Confidence interval is 95%
Z' = t(0.025)= 1.96
Confidence interval = x +/- Z'(r/√n)
= 12% +/- 1.96(4%/√60)
= 12% +/- 0.01214%
Confidence interval= (10.988% to 13.012%)
so hmmm let's get the area of the whole hexagon, and then get the area of the circle inside it, then <u>subtract the area of the circle from that of the hexagon's</u>, what's leftover is what we didn't subtract, namely the shaded part.
![\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\cot\stackrel{\stackrel{degrees}{\downarrow }}{\left( \frac{180}{n} \right)}~ \begin{cases} n=\textit{number of sides}\\ s=\textit{length of a side}\\[-0.5em] \hrulefill\\ n=\stackrel{hexagon}{6}\\ s=\frac{9}{2} \end{cases}\implies A=\cfrac{1}{4}(6)\left( \cfrac{9}{2} \right)^2 \cot\left( \cfrac{180}{6} \right)](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B4%7Dns%5E2%5Ccot%5Cstackrel%7B%5Cstackrel%7Bdegrees%7D%7B%5Cdownarrow%20%7D%7D%7B%5Cleft%28%20%5Cfrac%7B180%7D%7Bn%7D%20%5Cright%29%7D~%20%5Cbegin%7Bcases%7D%20n%3D%5Ctextit%7Bnumber%20of%20sides%7D%5C%5C%20s%3D%5Ctextit%7Blength%20of%20a%20side%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20n%3D%5Cstackrel%7Bhexagon%7D%7B6%7D%5C%5C%20s%3D%5Cfrac%7B9%7D%7B2%7D%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%5Cleft%28%20%5Ccfrac%7B9%7D%7B2%7D%20%5Cright%29%5E2%20%5Ccot%5Cleft%28%20%5Ccfrac%7B180%7D%7B6%7D%20%5Cright%29)
![A=\cfrac{1}{4}(6)\cfrac{9^2}{2^2} \cot(30^o)\implies A=\cfrac{243}{8}\cot(30^o)\implies A=\cfrac{243\sqrt{3}}{8} \\\\[-0.35em] ~\dotfill\\\\ \textit{area of circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=\frac{4}{5} \end{cases}\implies A=\pi \left( \cfrac{4}{5} \right)^2\implies A=\cfrac{16\pi }{25} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%5Ccfrac%7B9%5E2%7D%7B2%5E2%7D%20%5Ccot%2830%5Eo%29%5Cimplies%20A%3D%5Ccfrac%7B243%7D%7B8%7D%5Ccot%2830%5Eo%29%5Cimplies%20A%3D%5Ccfrac%7B243%5Csqrt%7B3%7D%7D%7B8%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ctextit%7Barea%20of%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D%5Cfrac%7B4%7D%7B5%7D%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B4%7D%7B5%7D%20%5Cright%29%5E2%5Cimplies%20A%3D%5Ccfrac%7B16%5Cpi%20%7D%7B25%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
Below
Step-by-step explanation:
● f(x) = -2x + 3
● f (0) = -2 (0) +3 = 3
● f(-32) = -2(-32)+3 = 64 + 3 = 67
● f(10) = -2(10) +3 = -20 + 3 = -17
● f(-17) = -2(-17) + 3 = 34 + 3 = 37
● f(10) => -17
● f(-17) => 37