The answer is C because of the ionization energy trend
The given question is incomplete. the complete question is:
The world burns the fossil fuel equivalent of approximately
kg of petroleum per year. Assume that all of this petroleum is in the form of octane. Calculate how much CO2 in kilograms is produced by world fossil fuel combustion per year.( Hint: Begin by writing a balanced equation for the combustion of octane.)
Answer: 
Explanation:
Combustion is a chemical reaction in which hydrocarbons are burnt in the presence of oxygen to give carbon dioxide and water.
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

To calculate the moles :

According to stoichiometry :
As 2 moles of octane give = 16 moles of 
Thus
of octane give =
of 
Mass of 
Thus
of
is produced by world fossil fuel combustion per year.
Answer:
Explanation:
It is a colorless liquid. It reacts with water to give adipic acid. It is prepared by treatment of adipic acid with thionyl chloride.
Adipoyl Chloride can be used in the synthesis of nylon. Also it is used in the synthesis of chiral polymer for membrane application.
Answer:
Radiation effects on electrical equipment depend on the equipment and on the type of ionizing radiation to which it is exposed.
First, beta radiation has little, if any, effect on electrical equipment because this type of ionizing radiation is easily shielded. The equipment housing and the construction of the parts within the housing will protect the equipment from beta-radiation (high-energy electrons) exposure.
Gamma radiation is penetrating and can affect most electrical equipment. Simple equipment (like motors, switches, incandescent lights, wiring, and solenoids) is very radiation resistant and may never show any radiation effects, even after a very large radiation exposure. Diodes and computer chips (electronics) are much more sensitive to gamma radiation. To give you a comparison of effects, it takes a radiation dose of about 5 Sv to cause death to most people. Diodes and computer chips will show very little functional detriment up to about 50 to 100 Sv. Also, some electronics can be "hardened" (made to be not affected as much by larger gamma radiation doses) by providing shielding or by selecting radiation-resistant materials.
Some electronics do exhibit a recovery after being exposed to gamma radiation, after the radiation is stopped. But the recovery is hardly ever back to 100% functionality. Also, if the electronics are exposed to gamma radiation while unpowered, the gamma radiation effects are less.
Ionizing radiation breaks down the materials within the electrical equipment. For example, when wiring is exposed to gamma rays, no change is noticed until the wiring is flexed or bent. The wire's insulation becomes brittle and will break and may cause shorts in the equipment. The effect on diodes and computer chips is a bit more complex. The gamma rays disrupt the crystalline nature of the inside of the electronic component. Its function is degraded and then fails as more gamma radiation exposure is received by the electronic component.
Gamma rays do not affect the signals within the device or the signals received by the device. Nonionizing radiation (like radio signals, microwaves, and electromagnetic pulses) DO mess with the signals within and received by the device. I put a cheap electronic game in my microwave oven at home. It arced and sparked and was totally ruined. I didn’t waste any more of my time playing that game.
Hope this helps.
Explanation:
MARK ME AS BARINIEST PLS
As long as the chemical is not used up in the reaction the answer is true