Answer:
New volume = 150 mL
Explanation:
Initial temperature, T₁ = 35°C
Initial volume, V₁ = 350 mL
We need to find the change in volume when the temperature drops to 15°C.
The relation between the temperature and the volume is given by Charle's law. Let new volume is V₂. It can be given by :

So, the new volume is 150 mL.
Answer: The results agree with the law of conservation of mass
Explanation:
The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. On the reactant side, the total mass of reactants is 14.3g and the total product masses is also 14.3g. That implies that no mass was !most in the reaction. The sum of masses on the left hand side corresponds with sum of masses on the right hand side of the reaction equation.
Astronomers can measure it by way of luminosity which is the power of a star or the amount of energy (light) the star admits from its surface. they also measure the brightness of a start as if it were to appear 32.6 light years from Earth
Answer:
V₂ = 1070 mL or 1.07 L
Solution:
Data Given;
P₁ = 1170 mmHg
V₁ = 915 mL
T₁ = 24 °C + 273 K = 297 K
P₂ = 842 mmHg
V₂ = ?
T₂ = - 23 °C + 273 K = 250 K
According to Ideal gas equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / P₂ T₁
Putting Values,
V₂ = (1170 mmHg × 915 mL × 250 K) ÷ (842 mmHg × 297 K)
V₂ = 1070 mL or 1.07 L