Alkenes must undergo addition because they have easily broken tt bonds.
Markonikov's rule states in the addition of HX to an unsymmetrical alkene, the H atom bonds to the less substituted carbon atom.
alkenes are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon.
Alkyl halides have good leaving groups and therefore readily undergo substitution and elimination reactions.
In hydroboration, the boron atom bonds to the substituted carbon.
Hydroxides, amines and alcoxides undergo substitution and elimination, but can do so only when the heteroatom is made into a good leaving group.
Answer:
The 20th century saw huge advances in our understanding and use of the nucleus. For instance, in 1939 scientists Otto Hahn, Lise Meitner and Otto Frisch discovered nuclear fission – a process by which radioactive materials release energy when they are induced to split.
Realising the huge amount of energy that such a reaction produces, scientists were tasked with developing this new knowledge initially for harm in nuclear weapons. Just six years after fission’s discovery, it was harnessed in the atom bombs that destroyed the Japanese cities Hiroshima and Nagasaki, and controversially ended the Second World War. Later, much more powerful hydrogen bombs were developed that combined fission with the process powering the Sun – fusion.
Hope this helps! PLEASE GIVE ME BRAINLIEST!!!!! =)
Answer:
2M
Explanation:
M=mol/L
1. Find moles of CoCl2
mass of substance/molar mass = 130/129.833 = 1.001 mol
3. Substitute in molarity equation
M=(1.001/0.5)
M= around 2M
The average rate of reaction over a given interval can be calculated by taking the difference of concentration on a particular given reactant, and dividing it by the total time. In this case, (1.00 M - 0.655 M)/30 s = 0.0115 M/s, or 0.0115 mol/L-s, and this is the final rate of reaction.
to have the closest number rounded up