1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
3 years ago
4

Please Help! Select the correct systems of equations. Which systems of equations intersect at point A in this graph?

Mathematics
1 answer:
o-na [289]3 years ago
3 0

Answer:

The systems of equation satisfying the problem are

Y= 4x+9

Y= -3x-5

Y= 2x+5.

Y= 5x+11

Y= 3x+7

Y= -x-1

Step-by-step explanation:

From the graph in the figure

The point A ; x= -2,y=1

So the equations that will interest at point A are the equations that both pass through the point A.

To know the equations that pass through the point A we solve them simultaneously.

For

Y = 10x-1

Y= -3x-5

0= 13x +4

X= -4/13..... definitely not this one

For

Y= 4x+9

Y= -3x-5

0= 7x +14

-14= 7x

-2= x

Substituting the value of x into Y= 4x+9

Y= 4x+9

Y= 4(-2)+9

Y = -8+9

Y= 1

So it's definitely this one

Let's check to know if there is any more

Y = 2x+5

Y= x-1

0= x +6

Definitely not this one

For

Y= 2x+5.

Y= 5x+11

0 = 3x+6

-6= 3x

-2= x

Y= 2x+5.

Y=2(-2)+5

Y= 1

Definitely this one

For

Y= 3x+7

Y= -x-1

0 = 4x +8

-8= 4x

-2= x

Y= -x-1

Y= -(-2)-1

Y= +2-1

Y= 1

Definitely this one too

You might be interested in
You are given 4 matrices M1, M2, M3, M4 and you are asked to determine the optimal schedule for the product M1 ×M2 × M3 ×M4 that
alexandr1967 [171]

Answer:

Step-by-step explanation:

first method is to try out all possible combinations and pick out the best one which has the minimum operations but that would be infeasible method if the no of matrices increases  

so the best method would be using the dynamic programming approach.

A1 = 100 x 50

A2 = 50 x 200

A3 = 200 x 50

A4 = 50 x 10

Table M can be filled using the following formula

Ai(m,n)

Aj(n,k)

M[i,j]=m*n*k

The matrix should be filled diagonally i.e., filled in this order

(1,1),(2,2)(3,3)(4,4)

(2,1)(3,2)(4,3)

(3,1)(4,2)

(4,1)

<u>                  Table M[i, j]                                             </u>

             1                      2                  3                    4

4    250000          200000        100000                0  

3      

750000        500000            0

2      1000000             0

1            

0

Table S can filled this way

Min(m[(Ai*Aj),(Ak)],m[(Ai)(Aj*Ak)])

The matrix which is divided to get the minimum calculation is selected.

Table S[i, j]

           1          2         3        

4

4          1           2         3

3          

1          2

2            1

1

After getting the S table the element which is present in (4,1) is key for dividing.

So the matrix multiplication chain will be (A1 (A2 * A3 * A4))

Now the element in (4,2) is 2 so it is the key for dividing the chain

So the matrix multiplication chain will be (A1 (A2 ( A3 * A4 )))

Min number of multiplications: 250000

Optimal multiplication order: (A1 (A2 ( A3 * A4 )))

to get these calculations perform automatically we can use java

code:

public class MatrixMult

{

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

int[] p = getMatrixSizes(args);

int n = p.length-1;

if (n < 2 || n > 15)

{

System.out.println("Wrong input");

System.exit(0);

}

System.out.println("######Using a recursive non Dyn. Prog. method:");

int mm = RMC(p, 1, n);

System.out.println("Min number of multiplications: " + mm + "\n");

System.out.println("######Using bottom-top Dyn. Prog. method:");

MCO(p);

System.out.println("Table of m[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%5d ", i);

System.out.print("\n---+");

for (int i=1; i<=6*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=1; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j; i++)

System.out.printf("%5d ", m[i][j]);

System.out.println();

}

System.out.println("Min number of multiplications: " + m[1][n] + "\n");

System.out.println("Table of s[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%2d ", i);

System.out.print("\n---+");

for (int i=1; i<=3*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=2; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j-1; i++)

System.out.printf("%2d ", s[i][j]);

System.out.println();

}

System.out.print("Optimal multiplication order: ");

MCM(s, 1, n);

System.out.println("\n");

System.out.println("######Using top-bottom Dyn. Prog. method:");

mm = MMC(p);

System.out.println("Min number of multiplications: " + mm);

}

public static int RMC(int[] p, int i, int j)

{

if (i == j) return(0);

int m_ij = Integer.MAX_VALUE;

for (int k=i; k<j; k++)

{

int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-1]*p[k]*p[j];

if (q < m_ij)

m_ij = q;

}

return(m_ij);

}

public static void MCO(int[] p)

{

int n = p.length-1;     // # of matrices in the product

m    =    new    int[n+1][n+1];        //    create    and    automatically initialize array m

s = new int[n+1][n+1];

for (int l=2; l<=n; l++)

{

for (int i=1; i<=n-l+1; i++)

{

int j=i+l-1;

m[i][j] = Integer.MAX_VALUE;

for (int k=i; k<=j-1; k++)

{

int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if (q < m[i][j])

{

m[i][j] = q;

s[i][j] = k;

}

}

}

}

}

public static void MCM(int[][] s, int i, int j)

{

if (i == j) System.out.print("A_" + i);

else

{

System.out.print("(");

MCM(s, i, s[i][j]);

MCM(s, s[i][j]+1, j);

System.out.print(")");

}

}

public static int MMC(int[] p)

{

int n = p.length-1;

m = new int[n+1][n+1];

for (int i=0; i<=n; i++)

for (int j=i; j<=n; j++)

m[i][j] = Integer.MAX_VALUE;

return(LC(p, 1, n));

}

public static int LC(int[] p, int i, int j)

{

if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

if (i == j) m[i][j] = 0;

else

{

for (int k=i; k<j; k++)

{

int   q   =   LC(p,   i,   k)   +   LC(p,   k+1,   j)   +   p[i-1]*p[k]*p[j];

if (q < m[i][j])

m[i][j] = q;

}

}

return(m[i][j]);

}

public static int[] getMatrixSizes(String[] ss)

{

int k = ss.length;

if (k == 0)

{

System.out.println("No        matrix        dimensions        entered");

System.exit(0);

}

int[] p = new int[k];

for (int i=0; i<k; i++)

{

try

{

p[i] = Integer.parseInt(ss[i]);

if (p[i] <= 0)

{

System.out.println("Illegal input number " + k);

System.exit(0);

}

}

catch(NumberFormatException e)

{

System.out.println("Illegal input token " + ss[i]);

System.exit(0);

}

}

return(p);

}

}

output:

7 0
3 years ago
Can you please help me with this problem ​
neonofarm [45]
Yes! It is option c. Because the solutions are equal to or greater than 1.
5 0
3 years ago
What is 2.5 and 2 and 3.5 rounded to the nearest tenth
pashok25 [27]
2.5 rounded to the nearest tenth is: 3
3.5 rounded to the nearest tenth is: 4
2 rounded to the nearest tenth is: 2
7 0
3 years ago
Read 2 more answers
What do the following two equations represent?
uysha [10]

Answer:

C)

Step-by-step explanation:

8 0
3 years ago
2 is a solution for <br><br> True or False
Vsevolod [243]

Answer:

False

Step-by-step explanation:

The open circle means you should not include the number it is on.

The inequality would look like, x<2 and not equal to. Therefore, 2 is not a solution.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Jaycee Alvarez deposits $425 in a savings account at City Bank. The account pays an annual interest rate of
    10·1 answer
  • Given the function, f(x)=x+1+2, choose the correct transformation.
    8·1 answer
  • Beth says that the graph of g(x)=x-5+1 is a
    9·1 answer
  • Find the final value of 2000 invested at an interest rate of 3% compounded quarterly for 8 years
    7·2 answers
  • Pete challenges his friend Jill to find two consecutive odd integers that have the following relationship. The product of the in
    13·2 answers
  • I just need an answer please ! ! !
    7·1 answer
  • For this item, any answers that are not whole numbers should be entered as decimals, rounded to the hundredth.
    13·1 answer
  • Create a linear function that has a solution at ( 2,6). Include a calculation that demonstrates why?
    6·1 answer
  • In the right triangle shown, m\angle A = 30\degreem∠A=30°m, angle, A, equals, 30, degree and BC = 6\sqrt{2}BC=6
    11·2 answers
  • Please help it’s geo!
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!