1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksano4ka [1.4K]
3 years ago
9

The diagram shows how cos θ, sin θ, and tan θ relate to the unit circle. Copy the diagram and show how sec θ, csc θ, and cot θ r

elate to the unit circle.
a. First, find in the diagram a segment whose length is sec θ. Explain why its length is sec θ.
b. Next, find cot θ. To do this you must add to the diagram. Use the representation of tangent as a clue for what to show for cotangent. Justify your claim for cot θ.
c. find csc θ in your diagram.
BIG idea Function
You can derive some functions from a basic parent function by a particular transformation. Functions related through these transformations

Mathematics
1 answer:
DIA [1.3K]3 years ago
3 0
<span>Copy the diagram and show how sec θ, csc θ, and cot θ relate to the unit circle. 

The representation of the diagram is shown if Figure 1. There's a relationship between </span>sec θ, csc θ, and cot θ related the unit circle. Lines green, blue and pink show the relationship. 

a.1 First, find in the diagram a segment whose length is sec θ. 

The segment whose length is sec θ is shown in Figure 2, this length is the segment \overline{OF}, that is, the line in green.

a.2 <span>Explain why its length is sec θ.

We know these relationships:

(1) sin \theta=\frac{\overline{BD}}{\overline{OB}}=\frac{\overline{BD}}{r}=\frac{\overline{BD}}{1}=\overline{BD}

(2) </span>cos \theta=\frac{\overline{OD}}{\overline{OB}}=\frac{\overline{OD}}{r}=\frac{\overline{OD}}{1}=\overline{OD}
<span>
(3) </span>tan \theta=\frac{\overline{FD}}{\overline{OC}}=\frac{\overline{FC}}{r}=\frac{\overline{FC}}{1}=\overline{FC}
<span>
Triangles </span>ΔOFC and ΔOBD are similar, so it is true that:

\frac{\overline{FC}}{\overline{OF}}= \frac{\overline{BD}}{\overline{OB}}<span>

</span>∴ \overline{OF}= \frac{\overline{FC}}{\overline{BD}}= \frac{tan \theta}{sin \theta}= \frac{1}{cos \theta} \rightarrow \boxed{sec \theta= \frac{1}{cos \theta}}<span>

b.1 </span>Next, find cot θ

The segment whose length is cot θ is shown in Figure 3, this length is the segment \overline{AR}, that is, the line in pink.

b.2 <span>Use the representation of tangent as a clue for what to show for cotangent. 
</span>
It's true that:

\frac{\overline{OS}}{\overline{OC}}= \frac{\overline{SR}}{\overline{FC}}

But:

\overline{SR}=\overline{OA}
\overline{OS}=\overline{AR}

Then:

\overline{AR}= \frac{1}{\overline{FC}}= \frac{1}{tan\theta} \rightarrow \boxed{cot \theta= \frac{1}{tan \theta}}

b.3  Justify your claim for cot θ.

As shown in Figure 3, θ is an internal angle and ∠A = 90°, therefore ΔOAR is a right angle, so it is true that:

cot \theta= \frac{\overline{AR}}{\overline{OA}}=\frac{\overline{AR}}{r}=\frac{\overline{AR}}{1} \rightarrow \boxed{cot \theta=\overline{AR}}

c. find csc θ in your diagram.

The segment whose length is csc θ is shown in Figure 4, this length is the segment \overline{OR}, that is, the line in green.

You might be interested in
How do I find the slope intercept
gavmur [86]
Use the slope intercept form; y=mx+b where m is the slope and b is the y-intercept
5 0
3 years ago
What is -7/ 12 plus 7/10 in simplest form
VMariaS [17]
It would be: -7/12 + 7/10 = -35+42 /60 = 7/60

So, your final answer is 7/60

Hope this helps!
6 0
3 years ago
Read 2 more answers
Please help thank you
allochka39001 [22]
I think it's 20. Sorry if it's wrong
4 0
3 years ago
En un triángulo rectángulo A es un ángulo agudo y Sen A = 4/5 ¿Cuál será el valor de Tan A?
Nonamiya [84]

Answer:

\displaystyle \tan A=\frac{4}{3}

Step-by-step explanation:

<u>Funciones Trigonométricas</u>

La identidad principal en trigonometría es:

sen^2A+cos^2A=1

Si sabemos que A es un ángulo agudo (que mide menos de 90°), su seno y coseno son positivos.

Dado que Sen A = 4/5, calculamos el coseno:

cos^2A=1-sen^2A

Sustituyendo:

\displaystyle cos^2A=1-\left(\frac{4}{5}\right)^2

\displaystyle cos^2A=1-\frac{16}{25}

\displaystyle cos^2A=\frac{25-16}{25}

\displaystyle cos^2A=\frac{9}{25}

Tomando raíz cuadrada:

\displaystyle cos\ A=\sqrt{\frac{9}{25}}=\frac{3}{5}

La tangente se define como:

\displaystyle \tan A=\frac{sen\ A}{cos\ A}

Substituyendo:

\displaystyle \tan A=\frac{\frac{4}{5}}{\frac{3}{5}}

\displaystyle \tan A=\frac{4}{3}

6 0
2 years ago
I need the answers for 3, 4, 5, and 6! thanks!!
Makovka662 [10]
Number 3 =32 us cups
4 0
3 years ago
Other questions:
  • A puppy has a mass of 4,500 grams and a kitten has a mass of 450,000 milligrams which statement is true about the animals
    8·1 answer
  • How do you divide a fraction by a fraction?<br> 20 points!!
    15·1 answer
  • How are discontinuities and zeros created in rational expressions, and in what ways can they be accounted for graphically?
    9·1 answer
  • 5 2/3 x 4 1/2 make sure your anser is correct
    5·1 answer
  • how much would it have rained if the total amount of rain (11 inches) was redusbtruted equally among 12 months of the yraer?
    8·2 answers
  • Help me plz Sadie is 63.5 inches tall. If 2.54 cm equals 1 inch, what is Sadie's height in centimeters?
    7·1 answer
  • 4x + 112° Find x. <br> 9x + 72°
    5·1 answer
  • Giving brainliest ! *easy*
    9·1 answer
  • HELPPPPPPPPPPP. please explain how u got the answer
    10·2 answers
  • Determining end behavior and intercepts to graph a polynomial function.Also for part (a) it asks it it falls to the left rises r
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!