Answer:
Net head = 380cm
bhp = 17.710kW
Explanation:
Angular velocity of centrifugal pump:

Normal velocity component at outlet of pump:

Tangential velocity component at exit of the pump:

Normal velocity component at inlet of pump:

Tangential velocity component at inlet of the pump:

Equivalent head in centimetre of water column:

Break horse power:
![bhp=rho_{water} gHV=rho_{water} g[(\frac{w}{g})(r_{2}V_{2,t}-r_{1}V_{1,t})]V\\\\bhp=(998)(9.81)[(\frac{78.54}{9.81})((0.24)(1.643)-(0.12)(0))](0.573)=17710W=17.710kW](https://tex.z-dn.net/?f=bhp%3Drho_%7Bwater%7D%20gHV%3Drho_%7Bwater%7D%20g%5B%28%5Cfrac%7Bw%7D%7Bg%7D%29%28r_%7B2%7DV_%7B2%2Ct%7D-r_%7B1%7DV_%7B1%2Ct%7D%29%5DV%5C%5C%5C%5Cbhp%3D%28998%29%289.81%29%5B%28%5Cfrac%7B78.54%7D%7B9.81%7D%29%28%280.24%29%281.643%29-%280.12%29%280%29%29%5D%280.573%29%3D17710W%3D17.710kW)
Your answer would be C. Hope this helps!!
Answer:
average force = 385,140 N
Explanation:
from the question we are given the following
mass (m) = 1800 kg
distance of fall (d) = 3 m
driven distance (l) = 14.4 cm = 0.144 m
acceleration due to gravity (g) = 9.8 m/s^{2}
work done = average force x driven distance.....equation 1
and
work done = change in kinetic energy + change in potential energy
work done = (0.5 x m x (v^{2} - u^{2})) + (m x g x (-d-l))
- Initial velocity (u) and final velocity (v) are zero because the pile driver is it rest before it moves to hit the pile and after hitting the pile.
- The changes in length for the potential energy are negative because the pile moves downward
we now have work done = (m x g x (-d-l))...equation 2
now equating the two equations for work done we have
average force x driven distance = (m x g x (-d-l))
average force x 0.144 = 1800 x 9.8 x (-3-0.144)
average force = (1800 x 9.8 x (-3-0.144)) ÷ 0.144
average force = 385,140 N
Answer:
The object has 2 meter length. This means the length is any quantity with a dimension distance. The definition of the length is how long something is or amount of space. In the given data it is stated that, the object is something that has a length of 2 meter.
<em>Let's take examples to understand. </em>
For example a thread or a table is an object which has a total length of 2 meters.
Another example is something we are measuring it gives us a result of 2 meters of length by using a meter scale or meter tape.
Length is a measure of distance and it is a fundamental quantity. Meter is a international system of units (SI units).
<span>The wires are suspended diagonally, meaning the tension in each is directed diagonally as well (along the wire). We can, however, talk about the horizontal and vertical components of the tension force. The horizontal tension force in each wire is Tcosθ, while the vertical tension force is Tsinθ.
The horizontal tension forces balance one another, because the wires are pulling in opposite directions. This means Tcosθ=Tcosθ, which is obvious but not very helpful. If you look at the vertical tension forces on the other hand, you can see that they must balance the weight of the body for the system to be in equilibrium. In other words:
Tsinθ+Tsinθ=mg
You're given enough information in the question to solve for T using this equation!</span>