Answer:
The tension in the string is quadrupled i.e. increased by a factor of 4.
Explanation:
The tension in the string is the centripetal force. This force is given by

m is the mass, v is the velocity and r is the radius.
It follows that
, provided m and r are constant.
When v is doubled, the new force,
, is

Hence, the tension in the string is quadrupled.
Answer:
14 m/s
Explanation:
Using the principle of conservation of energy, the potential energy is converted to kinetic energy, assuming any losses.
Kinetic energy is given by ½mv²
Potential energy is given by mgh
Where m is the mass, v is the velocity, g is acceleration due to gravity and h is the height.
Equating kinetic energy to be equal to potential energy then
½mv²=mgh
V
Making v the subject of the formula
v=√(2gh)
Substituting 9.81 m/s² for g and 10 m for h then
v=√(2*9.81*10)=14.0071410359145 m/s
Rounding off, v is approximately 14 m/s
Answer:
All steps are 20 * 100 (break the rest into appropriate pieces)
You can multiply as follows
(2000) * ((3 * 60) + (2 * 60) + 60)
V = 2000 * 6 * 60) = 720,000 cm^3 = .72 m^3
.72 m^3 * 2400 kg / m^3 = 1728 kg
I believe your answer is TRUE!
Hope this helps!:)
The answer is Dynamite.
Explosive, any substance or device that can be made to produce a volume of rapidly expanding gas in an extremely brief period. Chemical explosives are of two types; detonating, or high explosives and deflagrating, or low, explosives. Detonating explosives, such as TNT and dynamite, are characterized by extremely rapid decomposition and development of high pressure, whereas deflagrating explosives, such as black and smokeless powders, involve merely fast burning and produce relatively low pressures.