Answer: Temperature inversion
Explanation: Temperature inversion is a reverse of the normal temperature flow or distribution of the air,it usually causes temperature to rise as altitude increase towards the troposphere instead of reduction of temperature.
Temperature inversion is caused when warm,dense air flow above cold,less dense air. Temperature inversion is hazardous to man as it traps pollutants close to the Earth surface,this condition limits vertical circulation.
Answer:
1.41s
5.95m/s
0.2746m
Explanation:
The time period
T = 1/f
= 1/0.709s
= 1.41 seconds
We have
T = 2π√l/g
T² = 4π²l/g
g = 4π²l/T²
g = 4x3.14²x0.300/1.41²
g = 5.95m/s² this is the acceleration due to gravity.
Then the time period of the glide
T2 = 2π√m/k
Length of pendulum = l
Time period T
T2 = 2π√l/g
Then T1 = T2
2π√m/k = 2π√l/g
M/k = l/g
L = g.m/k
L = 5.95x0.450/9.75
L = 0.2746
This must be the length of the simple pendulum
That will depend on the coefficient of friction between the sliding surfaces, and also on Zak's weight. We don't have any of that information.
The particle moves with constant speed in a circular path, so its acceleration vector always points toward the circle's center.
At time
, the acceleration vector has direction
such that

which indicates the particle is situated at a point on the lower left half of the circle, while at time
the acceleration has direction
such that

which indicates the particle lies on the upper left half of the circle.
Notice that
. That is, the measure of the major arc between the particle's positions at
and
is 270 degrees, which means that
is the time it takes for the particle to traverse 3/4 of the circular path, or 3/4 its period.
Recall that

where
is the radius of the circle and
is the period. We have

and the magnitude of the particle's acceleration toward the center of the circle is

So we find that the path has a radius
of
