1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ad libitum [116K]
3 years ago
8

1/12 of 1/3 is what fraction?

Physics
1 answer:
Misha Larkins [42]3 years ago
6 0

\frac{1}{36}

Explanation:

Given problem;  \frac{1}{12} of \frac{1}{3}

 The of word is used in mathematics determine how much of something is a part of another.

It simply translates to the mathematical operator of multiplication (x or *).

To solve this problem, we simply multiply both fractions to find how much of \frac{1}{12} is \frac{1}{3}

Solving gives;

    \frac{1}{12} of \frac{1}{3} =  \frac{1}{12} x \frac{1}{3} = \frac{1}{36}

learn more:

Number properties brainly.com/question/5639299

You might be interested in
Which model could represent a neutral atom of boron?
UNO [17]

Answer:

model 3

Explanation:

Boron with atomic number 5 will have 3 valence electrons

5 0
3 years ago
Read 2 more answers
An electric filament lamp is connected to a power supply and switched on.
ladessa [460]
This is because of of the heating effect of a current. The glow is a result of current passing through the filament. The current experiences resistance as a result heat is generated. When resistance is at zero, there potential differences is not needed hence temperature generated will be at a constant.
7 0
3 years ago
In a second order lever system the force ratio is 2.5, the load is at the distance of 0.5m from the fulcrum find distance of eff
Fynjy0 [20]

Answer:

1.25 m

Explanation:

From the question given above, the following data were obtained:

Force ratio = 2.5

Distance of load from the fulcrum = 0.5 m

Distance of effort =.?

The distance of the effort from the fulcrum can be obtained as illustrated below:

Force ratio = Distance of effort / Distance of load

2.5 = Distance of effort / 0.5

Cross multiply

Distance of effort = 2.5 × 0.5

Distance of effort = 1.25 m

Therefore, the distance of the effort from the fulcrum is 1.25 m

8 0
3 years ago
Suppose astronomers discover a radio message from a civilization whose planet orbits a star 35 light-years away. Their message e
Grace [21]

Answer:

The duration  is  T  =72 \  years /tex]Explanation:From the question we are told that     The  distance is  [tex]D  =  35 \ light-years = 35 *  9.46 *10^{15} = 3.311 *10^{17} \  m

  Generally the time it would take for the message to get the the other civilization is mathematically represented as

         t =  \frac{D}{c}

Here c  is the speed of light with the value  c =  3.08 *10^{8} \  m/s

=>     t =  \frac{3.311 *10^{17} }{3.08 *10^{8}}

=>     t =  1.075 *10^9 \ s

converting to years

           t =  1.075 *10^9 *  3.17 *10^{-8}

              t =  1.075 *10^9 *  3.17 *10^{-8}

            t =  34 \ years

Now the total time taken is mathematically represented as

      T  =  2*  t  +  2 + 2

=>   T  =  2* 34  +  2 + 2

=>   [tex]T  =72 \  years /tex]

4 0
3 years ago
Three crates with various contents are pulled by a force Fpull=3615 N across a horizontal, frictionless roller‑conveyor system.
SIZIF [17.4K]

The question is incomplete. Here is the complete question.

Three crtaes with various contents are pulled by a force Fpull=3615N across a horizontal, frictionless roller-conveyor system.The group pf boxes accelerates at 1.516m/s2 to the right. Between each adjacent pair of boxes is a force meter that measures the magnitude of the tension in the connecting rope. Between the box of mass m1 and the box of mass m2, the force meter reads F12=1387N. Between the box of mass m2 and box of mass m3, the force meter reads F23=2304N. Assume that the ropes and force meters are massless.

(a) What is the total mass of the three boxes?

(b) What is the mass of each box?

Answer: (a) Total mass = 2384.5kg;

               (b) m1 = 915kg;

                   m2 = 605kg;

                   m3 = 864.5kg;

Explanation: The image of the boxes is described in the picture below.

(a) The system is moving at a constant acceleration and with a force Fpull. Using Newton's 2nd Law:

F_{pull}=m_{T}.a

m_{T}=\frac{F_{pull}}{a}

m_{T}=\frac{3615}{1.516}

m_{T}=2384.5

Total mass of the system of boxes is 2384.5kg.

(b) For each mass, analyse each box and make them each a free-body diagram.

<u>For </u>m_{1}<u>:</u>

The only force acting On the m_{1} box is force of tension between 1 and 2 and as all the system is moving at a same acceleration.

m_{1} = \frac{F_{12}}{a}

m_{1} = \frac{1387}{1.516}

m_{1} = 915kg

<u>For </u>m_{2}<u>:</u>

There are two forces acting on m_{2}: tension caused by box 1 and tension caused by box 3. Positive referential is to the right (because it's the movement's direction), so force caused by 1 is opposing force caused by 3:

m_{2} = \frac{F_{23}-F_{12}}{a}

m_{2} = \frac{2304-1387}{1.516}

m_{2} = 605kg

<u>For </u>m_{3}<u>:</u>

m_{3} = m_{T} - (m_{1}+m_{2})

m_{3} = 2384.5-1520.0

m_{3} = 864.5kg

8 0
3 years ago
Other questions:
  • Pls help asap. easy science question.
    12·2 answers
  • What are the tree types of thermal transfer
    11·2 answers
  • What is a example of analyze and interpret data?
    10·2 answers
  • A tree is fixed relative to Earth a tree is blank relative to the Sun
    5·1 answer
  • The speed of sound through oxygen at 0°C is 316 meters per second. The speed of sound through solid copper is 5,010 meters per s
    6·2 answers
  • Why is measurement important?​
    10·1 answer
  • What is the wavelength of an FM radio
    6·1 answer
  • What provides all of the energy required to drive convection within the atmosphere and oceans?
    15·1 answer
  • How is everyone's day been so far?
    14·1 answer
  • 16) Find the orbital speed of an ice cube in the rings of Saturn. The mass of Saturn is 5.68 x 10^26 kg, and use an orbital radi
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!