Cold is the absence of heat! so heat moves into the object from the environment (room) rapidly~ and it slows down by time and water is formed on the surface of the object because of cold and hot air.
I hope this helps cx
Answer: There is a single covalent bond in a chlorine molecule.
Explanation: The chlorine molecule is represented as Cl−Cl, i.e. C
l2. Between the chlorine atoms, 2 electrons overlap to form a region of high electron density to which the positively charged chlorine nuclei are attracted, such that internuclear repulsion is negated and a net attractive force results. Because the bonding electrons are shared between the nuclei, we conceive that each atom has 8 valence electrons.
Of course, on reaction with sodium, the sodium reduces the chlorine molecule to give 2×Cl−. The resultant bond between Na+ and Cl−is ionic and a non-molecular substance results.
You can call me Kat ᓚᘏᗢ
Answer: V2= 15.0403226 Liters
Explanation:
Use V1/T1=V2/T2
Make sure you change the degrees Celsius to Kelvin. (Kelvin = degrees Celsius +273)
10.0L / 248 K = V2/ 373 K
Cross multiply V1 and T2 and divide by T1
(10.0 L)( 373K)/ 248 K = V2
V2= 15.0403226 Liters (Kelvin cancels out)
In order to answer this question we might first want to think about what is electromagnetic radiation. In essence it’s light, just some of the wavelengths are too long or too short for us to see.
We can think about it as two oscillating sinusoidal (goes up and down) waves, one is electric, the other is magnetic.
Because we’re dealing in waves, that means we can calculate their frequency, wavelength, amplitude (brightness) and period.
To calculate it we can use E=hc/lambda
Where E = jewels of energy
h = Planck’s constant
c = speed of light
Lambda = wavelength
It doesn’t really matter for this question what those things mean, just note that it takes more energy to have a shorter wavelength, or less energy to have a longer wavelength.
So now we can answer the question. Light of a longer wavelength has less energy than that of a shorter wavelength. So, when long wavelengths are absorbed by matter (atoms) they will give those atoms less energy. So, either it will pass through the object entirely or it will make the atoms vibrate a little bit more than they already are and we call that thermal energy, or heat.
If high energy wavelengths are passing through matter then they will be giving those atoms a lot of energy, sometimes even ionizing the atoms.
Which, if you’re a living thing can be very bad for your cells.
I hope that helps.