Answer:
x = 28 m
y = 14 m
A(max) = 392 m²
Step-by-step explanation:
Rectangular garden A (r ) = x * y
Let´s call x the side of the rectangle to be constructed with a rock wall, then only one x side of the rectangle will be fencing with wire.
the perimeter of the rectangle is p = 2*x + 2*y ( but in this particular case only one side x will be fencing with wire
56 = x + 2*y 56 - 2*y = x
A(r) = ( 56 - 2*y ) * y
A(y ) = 56*y - 2*y²
Tacking derivatives on both sides of the equation we get:
A´(y ) = 56 - 4 * y A´(y) = 0 56 - 4*y = 0 4*y = 56
y = 14 m
and x = 56 - 2*y = 56 - 28 = 28 m
Then dimensions of the garden:
x = 28 m
y = 14 m
A(max) = 392 m²
How do we know that the area we found is a local maximum??
We find the second derivative
A´´(y) = - 4 A´´(y) < 0 then the function A(y) has a local maximum at y = 14 m
Using the formula for finding slope...
y2 - y1 10 - 5 5
---------- = -------- = -----
x2 - x1 4 - 2 2
The slope of the line is 5/2.
This means that 5 mm of rain falls every 2 hours.
Answer:
2/5
Step-by-step explanation:
3/5 - 1/5 = 2/5
I hope this helps
Answer:
Slope: -3/2 y intercept: 3
Step-by-step explanation: