The answers to this question is b, I did this on Plato
Answer:
Because of statements (a), (c) and (d).
Explanation:
Let's evaluate each statement to know why they focus on higher alcohols instead of ethanol:
(a) It is easier to produce higher alcohols in microbes than it is to produce ethanol<u>.</u> This is true<u> since ethanol is the major biofuel in the world because it can be easily produced by fermentation technology developed a long time ago. Recently, higher alcohols are produced from microorganisms that are used as microbial cell factories.</u>
(b) Higher alcohols have a higher hygroscopicity than ethanol. This is false since ethanol is more hygroscopic than higher alcohols.
(c) Higher alcohols have a lower vapor pressure than ethanol. This is true, ethanol has a higher vapor pressure than higher alcohols. The vapor pressure is important since it can affect the proper cold starting of the engine.
(d) Higher alcohols have a higher energy density than ethanol. This is true since the production of higher alcohols as biofuels is more desirable than the ethanol because higher alcohols have a high energy density and other more advantages than the use of ethanol.
Therefore the answer of why did they focus on higher alcohols to add to or substitute gasoline instead of ethanol is because of the statements (a), (c) and (d).
I hope it helps you!
Answer:
Mass= 2.77g
Explanation:
Applying
P=2.09atm, V= 1.13L, R= 0.082, T= 291K, Mm of N2= 28
PV=nRT
NB
Moles(n) = m/M
PV=m/M×RT
m= PVM/RT
Substitute and Simplify
m= (2.09×1.13×28)/(0.082×291)
m= 2.77g
Carbon source is the answer for ur question
Explanation:
Cause the clumps are so compacted together that it is harder to brake apart but the one that are separated are easy cause they do not have all the pressure on them and when they go to add reaction it is faster