Answer:
-6112.26 J
Explanation:
The initial kinetic energy,
is given by
} where m is the mass of a body and
is the initial velocity
The final kinetic energy,
is given by
where
is the final velocity
Change in kinetic energy,
is given by

Since the skater finally comes to rest, the final velocity is zero. Substituting 0 for
and 12.6 m/s for
and 77 Kg for m we obtain

From work energy theorem, work done by a force is equal to the change in kinetic energy hence for this case work done equals <u>-6112.26 J</u>
Answer:
w = 0.173 N
Explanation:
The weigh of any object is computed by multiplying its mass to the acceleration of gravity, so we need to find the gravity on that planet in order to compute the weigh we want.
The ball has a mass of 0.1 kg and its released from a height of 10 m, therefore it is in a free fall motion with gravity acting as a constant acceleration on the body, we can use the equations for free fall movement in order to determine the value for this acceleration:
y(t) = v_0 * t + y_0 - 0.5 * g * t^2
y(t) is the position in the end of the movement, when t = 3.4 s, so y(t) = 0 m.
v_0 is the initial velocity, in this case v_0 = 0 m/s.
y_0 is the initial position of the ball, in this case it is 10 m.
g is the gravity that we want to know.
Applying these values in the equation we have:
0 = 0*(3.4) + 10 - 0.5*g*(3.4)^2
0 = 10 - 0.5*11.56*g
0 = 10 -5.78*g
5.78*g = 10
g = 1.73 m/s^2
Then we can use this value to find out the weigh of the ball in that planet:
w = g*m = 0.1*1.73 = 0.173 N
Explanation:
Electrostatic induction, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of electric charge in an object, caused by the influence of nearby charges.[1] In the presence of a charged body, an insulated conductor develops a positive charge on one end and a negative charge on the other end.[1] Induction was discovered by British scientist John Canton in 1753 and Swedish professor Johan Carl Wilcke in 1762.[2] Electrostatic generators, such as the Wimshurst machine, the Van de Graaff generator and the electrophorus, use this principle. Due to induction, the electrostatic potential (voltage) is constant at any point throughout a conductor.[3] Electrostatic Induction is also responsible for the attraction of light nonconductive objects, such as balloons, paper or styrofoam scraps, to static electric charges. Electrostatic induction laws apply in dynamic situations as far as the quasistatic approximation is valid. Electrostatic induction should not be confused with Electromagnetic induction
The cyclist accelerates for 4 seconds.
Explanation:
The motion of the cyclist is a motion at constant acceleration, so we can use suvat equations:

where
s = 64 m is the distance covered
u = 15 m/s is the initial velocity
t is the time
is the acceleration
Substituting into the equation,

Solving the equation for t,

Which gives two solution: one is negative, so we discarde it since it has no physical meaning; the other one is
t = 4 s
which is the answer we were looking for.
Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly