see
below
Explanation:
refractive index = speed of light in vacuum / speed of light in medium
light travels at a speed of 3.0 x 10^8 m/s in vacuum
refractive index = 3.0 x 10^8 / 2.0 x 10^8
refractive index = 1.5
hope this helps, please mark it
Answer:
0 J
Explanation:
From the diagram below; we would notice that the Force (F) = Tension (T)
Also the angle θ adjacent to the perpendicular line = 90 °
The Workdone W = F. d
W = Fd cos θ
W = Fd cos 90°
W = Fd (0)
W = 0 J
Hence the force is perpendicular to the direction of displacement and the net work done in a circular motion in one complete revolution is = 0
Answer:
A reserved power is a power specifically reserved to the states. Powers include setting up local governments and determining the speed limit. A concurrent power is a power that is given to both the states and the federal government.
Explanation:
Answer:
Explanation:
a. Landing height is
H=1.3m
Velocity of lander relative to the earth is, i.e this is the initial velocity of the spacecraft
u=1.3m/s
Velocity of lander at impact, i.e final velocity is needed
v=?
The acceleration due to gravity is 0.4 times that of the one on earth,
Then, g on earth is approximately 9.81m/s²
Then, g on Mars is
g=0.4×9.81=3.924m/s²
Then using equation of motion for a free fall body
v²=u²+2gH
v²=1.3²+2×3.924×1.3
v²=1.69+10.2024
v²=11.8924
v=√11.8924
v=3.45m/s
The impact velocity of the spacecraft is 3.45m/s
b. For a lunar module, the safe velocity landing is 3m/s
v=3m/s.
Given that the initial velocity is 1.2m/s²
We already know acceleration due to gravity on Mars is g=3.924m/s²
The we need to know the maximum height to have a safe velocity of 3m/s
Then using equation of motion
v²=u²+2gH
3²=1.2²+2×3.924H
9=1.44+7.848H
9-1.44=7.848H
7.56=7.848H
H=7.56/7.848
H=0.963m
The the maximum safe landing height to obtain a final landing velocity of 3m/s is 0.963m