1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nataly862011 [7]
3 years ago
5

a ball is dropped from a height of 512 inches onto a level floor. after the fourth bounce it is still 2 inches off the ground. p

resuming that the height the ball bounces is always the same fraction of the height reached on the previous bounce. what is that fraction? A) 1/4 B) 3/7 C) 5/9 D)4/7 E)3/5
Mathematics
2 answers:
Stels [109]3 years ago
5 0

Answer:

A. 1/4

Step-by-step explanation:

We know that before the 1st bounce, the height of the ball is 512 inches.

Say the fraction is x.

Then, after the first bounce, the height of the ball is 512 * x = 512x.

After the second bounce, the height is now x * 512x = 512x².

By similar reasoning, the height after the third bounce is 512x³ and after the fourth bounce, it is 512x^4.

We also know that after the fourth bounce, the height is 2 inches. So, set 2 equal to 512x^4:

2 = 512x^4

Divide both sides by 512:

x^4=2/512x^4=2/512=1/256

Take the fourth root of both sides:

x=\sqrt[4]{1/256} =1/4

Hence, the answer is A.

<em>~ an aesthetics lover</em>

Sliva [168]3 years ago
5 0

Answer:

A. 1/4.

Step-by-step explanation:

This is exponential decay so we  have , where x = the fraction:

512(x)^4 = 2

x^4 = 1/256

x= 1 / (256)^0.25

= 1/4

You might be interested in
Q23. Look at the image
alisha [4.7K]

Answer:

B. First term = 5, Common difference = -3

Step-by-step explanation:

The first term is f(1) = 8 - 3(1) = 8 - 3 = 5.

The common difference is the coefficient of  n.  Another way to see this is to compute the second term, f(2) = 8 - 3(2) = 8 - 6 = 2.  The second term is 3 less than the first.  The common difference is -3.

The sequence goes 5, 2, -1, -4, ...

4 0
3 years ago
Given the function f(x) = 3|x – 2| + 6, for what values of x is f(x) = 18?
Nikolay [14]

Answer:

x = -2, x = 6

Step-by-step explanation:

18 = 3|x - 2| + 6

12 = 3|x - 2|

4 = |x - 2|

4 = x - 2    and    -4 = x - 2

x = 6    and    x = -2

4 0
2 years ago
Read 2 more answers
N/45=1/15<br> a. n= 1/3<br> b. n=4<br> c. n=675<br> d. n=3
jek_recluse [69]

Answer:

n=3

Step-by-step explanation:

n/45=1/45

cross multiplying

15n=45

n=45/15

n=3

5 0
3 years ago
Please help me with this question!
Alla [95]

Answer: 45 ft

Step-by-step explanation:

and 15ft add 10ft to get 25ft

then subtract 70 from 25

4 0
3 years ago
Can anyone help me out with this?​
bogdanovich [222]

{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}

\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

\bullet \sf \:   {(a + b)}^{ab}

<u>Putting value of a as 3 and b as -2, we get</u><u> </u><u>:</u>

\longrightarrow \sf \:   {( 3 +  (- 2))}^{3 \times  - 2}

\longrightarrow \sf \:   {( 3 - 2)}^{3 \times  - 2}

\longrightarrow \sf \:   {( 1)}^{ - 6}

• <u>Using negative Exponents Law</u>

\longrightarrow \sf   \dfrac{1}{ {1}^{6} }

\longrightarrow \sf   \dfrac{1}{ 1 \times 1 \times 1 \times 1 \times 1 \times 1 }

\longrightarrow \sf   \dfrac{1}{  1 }

\longrightarrow \sf   \purple{1}

{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}

\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

\bullet  \sf \:  \dfrac{ {8}^{ - 1} \times   {5}^{3} }{ {2}^{ - 4}}

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times  \dfrac{1}{{2}^{ - 4}}

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times   5 \times 5 \times 5  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   2 \times 2 \times 2 \times 2

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:   \dfrac{1}{ \cancel{8}_{4}} \times 125  \times   \cancel{2}_{1} \times 2 \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel4_{2}} \times 125  \times   \cancel{2}_{1}  \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel2} \times 125  \times   \cancel{2}   \times 2

\longrightarrow  \sf \:    125  \times 2

\longrightarrow  \sf \red{  250}

{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}

\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}

\bullet \sf  \dfrac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

\longrightarrow \sf  \dfrac{ \sqrt{4 \times 4 \times 2} +  \sqrt{4 \times 4 \times 3}  }{ \sqrt{2 \times 2 \times 2} +  \sqrt{2 \times 2 \times 3}  }

\longrightarrow \sf  \dfrac{ \sqrt{  {4}^{2}   \times 2} +  \sqrt{ {4}^{2}  \times 3}  }{ \sqrt{ {2}^{2}  \times 2} +  \sqrt{ {2}^{2}  \times 3}  }

\longrightarrow \sf  \dfrac{ 4\sqrt{    2} + 4 \sqrt{  3}  }{ 2\sqrt{  2} +2  \sqrt{  3}  }

\longrightarrow \sf  \dfrac{ \cancel{ 4}_{2}(\sqrt{    2} +  \sqrt{  3})  }{  \cancel{2}(\sqrt{  2} + \sqrt{  3})  }

\longrightarrow \sf  \dfrac{ 2  \: \cancel{(\sqrt{    2} +  \sqrt{  3}) } }{  \cancel{(\sqrt{  2} + \sqrt{  3})}  }

\longrightarrow \sf   \green{2}

\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}

\bullet  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{80} +  \sqrt{48}  - \sqrt{45}  -  \sqrt{27}   }

\begin{gathered}  \longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{4 \times 4 \times 5} +  \sqrt{4 \times 4 \times 3}  - \sqrt{3 \times 3 \times 5}  -  \sqrt{3 \times 3 \times 3}   } \end{gathered}

\begin{gathered}\longrightarrow  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{ {4}^{2}  \times 5} +  \sqrt{ {4}^{2}  \times 3}  - \sqrt{ {3}^{2}  \times 5}  -  \sqrt{ {3}^{2}  \times 3}   } \end{gathered}

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5} + 4 \sqrt{   3}  - 3\sqrt{    5}  -  3\sqrt{  3}   }

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5}   - 3\sqrt{    5} + 4 \sqrt{   3} -  3\sqrt{  3}   }

\longrightarrow  \sf \dfrac{ \cancel{ \sqrt{5}  +  \sqrt{3}} }{ \cancel{\sqrt{    5}  +   \sqrt{  3}   } }

\longrightarrow   \blue{1}

{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 - \purple{1}

• Question 2 - \red{250}

• Question 3(1) - \green{2}

• Question 3(2) - \blue{1}

{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

<u>★</u><u> </u><u>Negative</u><u> Exponents Law -</u>

\bullet  \sf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

★ \sqrt{32} can be written as 4 \sqrt{2}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{8} can be written as 2 \sqrt{2}

‣ \sqrt{12} can be written as 2 \sqrt{3}

‣ \sqrt{80} can be written as 4 \sqrt{5}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{45} can be written as 3 \sqrt{5}

‣ \sqrt{27} can be written as 3 \sqrt{3}

★ <u>During Addition and Subtraction</u>

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.

{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.

\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

5 0
2 years ago
Other questions:
  • Use a calculator to see what would happen if you used a credit card to pay the minimum monthly payment. Calculate using the foll
    15·2 answers
  • Simplify: 3log3(-5) = <br> A. -5 <br> B. 3<br> C. 9<br> D. undefined
    6·1 answer
  • Simplify.
    7·2 answers
  • Solve for x. x−4.76=−7
    13·1 answer
  • What is the maximum amount of baggage that may be loaded aboard the airplane for the cg to remain within the moment envelope? we
    5·1 answer
  • The box part of the box plot contains all the values between which numbers?
    14·1 answer
  • Is 5 in the solution set x +3≥8
    10·1 answer
  • Can someone please give me the answers
    5·1 answer
  • A hemispherical tank is filled with water and has a diameter of 22 feet. If water
    11·2 answers
  • PLS HELP DUE IN 1 HOUR <br><br> write the expression using positive exponents <br> 1/3^-5
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!